首页|Robin系数辨识的增广拉格朗日方法

Robin系数辨识的增广拉格朗日方法

扫码查看
提出了一种基于解在可测边界上的测量值来估计椭圆型方程中Robin系数的非线性反问题。首先应用正则化方法将该反问题转化为带约束的极小值问题,并且证明了极小解的存在性。然后应用增广拉格朗日方法将该带约束的极小值问题转化为无约束的鞍点问题,并且在理论上严格证明了它们的等价性。
An Augmented Lagrangian Method for Identifying Robin Coefficient
A nonlinear inverse problem was proposed to estimate Robin coefficients in elliptic equations based on the measured values of the solution on measurable boundaries.Firstly,the regularization method was applied to transform the inverse problem into a constrained minimum problem,and the existence of the minimization solution was proved.Then,the augmented Lagrangian method was used to convert the constrained minimum problem into an unconstrained saddle point problem,and their equivalence was proved strictly in theory.

elliptic equationsRobin inverse problemaugmented Lagrangian methodregularization

贺佳庆、刘杰

展开 >

武汉纺织大学 数理科学学院,湖北 武汉 430200

椭圆型方程 Robin反问题 增广拉格朗日方法 正则化

2024

江汉大学学报(自然科学版)
江汉大学

江汉大学学报(自然科学版)

影响因子:0.413
ISSN:1673-0143
年,卷(期):2024.52(6)