首页|基于ARIMA时序模型的灌区供需水量预测研究

基于ARIMA时序模型的灌区供需水量预测研究

扫码查看
为实现茨淮新河灌区水量分配与管理的科学预测,基于1991-2023年灌区抽水量实采数据建立灌区水量供需平衡分析体系.利用灰色关联度分析和ARIMA时序模型分析农业、生活、航运等场景的需水量指标对总抽水量的影响,并预测灌区未来水量需求.结果表明,灌溉需水与实际抽水量的关联度最高达到 0.8983,通过多重检验和模型训练,ARIMA模型的预测准确率达到了88.587%,可以为灌区水量供需与调度提供有效参考.该预测方法可推广至其他水资源紧张区域,为水量供需的优化管理提供借鉴与参考.
Research on water supply and demand forecasting in irrigation areas based on the ARIMA time series mode
To achieve scientific prediction for water allocation and management in the Cihuai New River Irrigation Area,an ana-lytical system for the balance of water supply and demand was established in the irrigation area,using the actual water extrac-tion data from 1991 to 2023.Using grey relational analysis and the ARIMA time series model,the impact of water demand indi-cators such as agriculture,domestic use,and navigation on total water extraction and forecasts future water demand were ana-lyzed.The results showed that the highest correlation degree between irrigation water demand and actual pumping amount was 0.8983.Through multiple tests and model training,the ARIMA model achieved a prediction accuracy of 88.587%,and provided an effective reference for water supply and scheduling in the irrigation area.The prediction method proposed in this paper could be extended to other water-scarce regions,offering a reference for the optimization management of water supply and demand.

irrigation water managementARIMA modelgrey relational analysiswater volume prediction

张书宝

展开 >

安徽省茨淮新河工程管理局,安徽 蚌埠 233400

灌区水量管理 ARIMA模型 灰色关联度分析 水量预测

2024

江淮水利科技
安徽省水利志编辑室 安徽省水利学会

江淮水利科技

影响因子:0.087
ISSN:1673-4688
年,卷(期):2024.(4)
  • 8