首页|基于生成对抗网络的中式婚服设计

基于生成对抗网络的中式婚服设计

扫码查看
为了解决传统中式婚服设计开发方法存在费时及效率低下的问题,提出将深度学习技术引入到中式婚服设计中,采用基于Pix2Pix算法模型的生成式设计方法,通过爬虫技术获取中式婚服图像数据,并对样本数据进行筛选以及轮廓特征、边缘特征和语义特征的标注,进而展开由单特征控制条件生成与特征联合控制条件生成两组实验.研究表明,联合控制条件生成的"递进式生成法"结合了生成对抗网络与条件图像生成方法的优势,服装特征标注被用作条件以增加服装图像生成过程的可控性,相较于"单特征控制条件生成"的细节调控能力更强,该结果可为中式婚服设计开发提供思路.
Chinese Wedding Dress Design Based on Generative Adversarial Network
In order to solve the time-consuming and low-efficiency problems in traditional Chinese wedding dress design and development methods,this study introduced deep learning technology into Chinese wedding dress design.It proposed a generative design method based on the Pix2Pix algorithm model.The Chinese wedding dress data was obtained through crawler technology.It annotated contour features,edge features and semantic features,and then launched two sets of experiments consisting of single feature control condition generation and feature joint control condition generation.The research shows that the"progressive generation method"that jointly controls conditional generation combines the advantages of generative adversarial networks and conditional image generation methods.Clothing feature annotations were used as conditions to enhance the controllability of the clothing image generation process.Compared to"single feature control condition generation",this approach offers superior detailed control capabilities,providing ideas for the design and development of Chinese wedding dress.

Chinese wedding dressdeep learningPix2Pix algorithmcontrol condition generation

刘康、马浩然、邢乐

展开 >

江南大学数字科技与创意设计学院,江苏无锡 214400

江南大学江苏省非物质文化遗产研究基地,江苏 无锡 214122

江南大学 设计学院,江苏 无锡 214122

中式婚服 深度学习 Pix2Pix算法 控制条件生成

江苏省哲学社会科学基金项目

21YSC009

2024

服装学报
江南大学

服装学报

北大核心
影响因子:0.239
ISSN:2096-1928
年,卷(期):2024.9(3)