首页|基于多源大数据的长株潭城市群城镇建成区综合集成识别与空间分异机制

基于多源大数据的长株潭城市群城镇建成区综合集成识别与空间分异机制

扫码查看
以长株潭城市群为研究区域,综合采用珞珈一号夜间灯光、POI和OSM路网等多源大数据对城市群城镇建成区进行集成识别,进而运用地理探测器,从六大方面对建成区密度和效率空间分异机制进行深入剖析及比较.结果表明:①8种组合类型从不同维度刻画长株潭城市群城镇功能空间布局图景,多源数据A1∪B1∪C1集成识别较好实现对建成区信息的完整准确提取,弥补了单一数据识别或两两集成等不足.综合集成识别建成区面积为1890.19 km2,占土地总面积比重为6.73%,相对于地表覆盖遥感影像解译,识别空间信息更为全面和契合实际.②长株潭城镇建成区呈"一主两副、轴带拓展、多组团多节点"结构,区域差异和空间分异明显.区县尺度密度分异呈现不规则圈层结构,城市群东部、南部和西部山地丘陵区域均为低值区,效率梯度分布呈"同心圆+北高南低"复合模式.③长株潭城镇建成区密度和效率空间分异机制复杂,密度分异主要受自然与交通条件、人口与城镇化、经济发展、投资与消费等因素影响,效率分异则主要受城镇化、经济结构与水平、房地产开发投资及民生服务等因素影响,因子交互作用对建成区密度与效率均存在双因子增强与非线性增强效应,对效率分异的增强效果更为显著.
Integrated Identification and Spatial Differentiation Mechanism of Urban Built-up Area in Changsha-Zhuzhou-Xiangtan Urban Agglomeration Based on the Multi-source Big Data
Taking Changsha-Zhuzhou-Xiangtan urban agglomeration as the study area,this paper carries out the integrated identification of urban built-up areas of Changsha-Zhuzhou-Xiangtan urban agglomeration based on the multi-source big data such as Luojia-1 night light,POI and OSM road network,and uses Geodetector to analyzes the spatial differentiation mechanism of built-up areas'density and efficiency from six major aspects.The results show that:1)Eight combination types It portrays the functional spatial layout of cities and towns in Changsha-Zhuzhou-Xiangtan urban agglomeration based on eight combination types from different dimensions.According to the integrated identification of multi-source data A1∪B1∪C1,it better realizes the complete and accurate extraction of built-up area information,which makes up for the shortcomings of single data identification or pairwise integration.The area of built-up area is 1890.19 km2,accounting for 6.73%of the total land area,and the spatial information is more comprehensive and suitable for the actual situation relative to the surface coverage remote sensing image interpretation.2)The built-up area in cities and towns of Changsha-Zhuzhou-Xiangtan is characterized by the structure of"one main district and two sub-districts,multiple clusters and multiple nodes,axis-belt expanding",with obvious regional differences and spatial differentiation.The density differentiation at district and county scales shows an irregular circle structure,with low-value areas in the eastern,southern and western hilly areas of the urban agglomeration,the efficiency gradient shows the distribution pattern of"concentric circles+high in the north and low in the south".3)The spatial differentiation mechanism of density and efficiency of urban built-up areas in Changsha-Zhuzhou-Xiangtan is complicated.Density differentiation is mainly affected by natural and transportation conditions,population and urbanization,economic development,investment and consumption.Efficiency differentiation is mainly affected by urbanization,economic structure and level,real estate development and investment,and people's livelihood services.The factor interactions of built-up area density and efficiency have the two-factor enhancement and nonlinear enhancement effects on both built-up area density and efficiency,and the enhancement effect on efficiency differentiation is more significant.

urban agglomerationurban built-up areaurban functional spacemulti-source big dataintegrated identificationspatial differentiationnew-type urbanization

唐常春、陈珈琪、谢昀霏、唐嘉璐、周楚来

展开 >

长沙理工大学 建筑学院,中国 湖南 长沙 410076

湖南城市学院设计研究院有限公司,中国 湖南 长沙 410005

武汉大学 经济与管理学院,中国 湖北 武汉 430072

城市群 城镇建成区 城镇功能空间 多源大数据 集成识别 空间分异 新型城镇化

国家社会科学基金后期资助项目

22FJLB031

2024

经济地理
中国地理学会 湖南省经济地理研究所

经济地理

CSTPCDCSSCICHSSCD北大核心
影响因子:2.575
ISSN:1000-8462
年,卷(期):2024.44(1)
  • 34