首页|流空间视角下武汉都市圈城市空间联系格局及影响因素

流空间视角下武汉都市圈城市空间联系格局及影响因素

扫码查看
进入高质量发展阶段,都市圈作为国家新型城镇化战略格局中承上启下的关键环节,已成为引领区域发展的重要空间单元。文章以武汉都市圈为研究区域,基于手机信令、百度指数等多源大数据,采用要素流模型、SOM神经网络分级模型和QAP关系回归分析等得出城市空间联系格局、发展规律及影响因素。结果表明:①武汉都市圈各要素流动形成的空间格局呈多中心组团式结构,且内部流动强度不一;②根据SOM神经网络分级模型结果将武汉都市圈城市的对外联系能力划分为4个等级,其中武汉的对外联系能力与其他城市之间呈现出显著差异;③城市发展水平和信息化水平差异对不同城市间要素流强度具有显著负影响,城市规模和开放程度差异具有显著的正向作用,共同影响了都市圈内城市空间联系格局的形成。最后,针对武汉都市圈城市空间联系格局的优化提出建议。
Pattern and Influencing Factors of Urban Spatial Connection in Wuhan Metropolitan Area from the Perspective of Flow Space
Entering the stage of high-quality development,metropolitan areas,as a key link in the national new-type urbanization strategic pattern,have become an important spatial unit leading the regional development.This study takes Wuhan metropolitan area(WMA)as the research area.Based on the multi-source big data such as the mobile phone signaling and the Baidu index,this study explores the urban spatial connection pattern and influencing factors of WMA by using the factor movement model,the SOM neural network classification model,and the QAP regression analysis.The results show that:1)The spatial pattern formed by the flow of various elements in WMA is a multi-center structure,and the internal flow intensity is varied between different cities.2)SOM neural network classification model shows that the cities of WMA will be divided into four levels according to their current urban spatial connections and there will be huge gaps between different levels.3)The variances in the urban development level and the informatization level have a significantly negative impact on the intensity of factor movements among different cities,while the difference of city size and openness degree has a significantly positive impact,which jointly affects the formation of urban spatial linkage pattern in metropolitan areas.According to the above,it puts forward suggestions for optimizing of the spatial linkage pattern of the Wuhan metropolitan area.

factor movementpopulation flowmulti-source big datamobile signalingSOM neural network classification modelspatial connection patternWuhan metropolitan area

林赛南、邓慧琳、彭馨雨、陈书迪、王雨

展开 >

武汉大学 城市设计学院/湖北省人居环境工程技术研究中心,中国 湖北 武汉 430072

高密度人居环境生态与节能教育部重点实验室,中国 上海 200000

罗格斯大学 规划与公共政策学院,美国新泽西 新布朗斯维克 08901

要素流 人口流 多源数据 手机信令 SOM神经网络分类模型 空间联系格局 武汉都市圈

国家自然科学基金

42171205

2024

经济地理
中国地理学会 湖南省经济地理研究所

经济地理

CSTPCDCSSCICHSSCD北大核心
影响因子:2.575
ISSN:1000-8462
年,卷(期):2024.44(2)
  • 35