首页|基于ResNet的害虫图像质量评估方法

基于ResNet的害虫图像质量评估方法

扫码查看
提出一种基于ResNet的害虫图像质量评估方法,从而对林业害虫图像进行预评估.该方法首先提取害虫图像特征,并通过 Wasserstein 距离计算不同图像特征间的相似分布距离作为质量伪标签进行训练.通过预评估区分出不同质量的林业害虫图像,对其进行筛选、识别、分类,从而达到提高识别准确率的效果.实验结果表明,经过该方法筛选后的林业害虫数据集在ResNet18 和ResNet50 网络上识别准确率分别提升 2.97%,2.57%.
Research on forest pest identification method based on face image quality assessment
To solve the above problems,we propose a ResNet-based quality assessment method for pest images to pre-evaluate forestry pest images.The method first extracts pest image features and calculates the similar distribution distance between different image features as quality pseudo-labels for training by Wasserstein distance.Then,different quality forestry pest images are distinguished by pre-evaluation and screened for recognition classification to improve recognition accuracy.The experimental results show that the recognition accuracy of the forest pest dataset screened by this method is improved by 2.97%and 2.57%on the ResNet18 and the ResNet50 networks,respectively.

ResNetconvolutional neural networkforestry pestsquality assessment

王红梅、朱莉

展开 >

长春工业大学 计算机科学与工程学院,吉林 长春 130102

ResNet 卷积神经网络 林业害虫 质量评估

吉林省教育厅项目

JJKH20230767KJ

2024

长春工业大学学报
长春工业大学

长春工业大学学报

影响因子:0.282
ISSN:1674-1374
年,卷(期):2024.45(1)
  • 15