首页|基于改进V-Net的颅内出血病灶分割算法

基于改进V-Net的颅内出血病灶分割算法

扫码查看
针对颅内出血病灶分割不精确问题提出一种改进V-Net算法.用深度可分离卷积去替换普通卷积,加快模型训练速度.在编码器和解码器中分别加入通道注意力机制和混合注意力机制.通过引入SE模块和CBAM模块,强化原始网络的特征提取能力以及自适应调整特征图中不同通道之间的权重,提高模型的性能表现.对比实验结果表明,改进后的 V-Net分割评价指标DSC达到 0.732,比原始V-Net提升 4.4%.
Improved V-Net-based lesion segmentation algorithm for intracranial hemorrhage
An improved V-Net algorithm is proposed to address the inaccurate segmentation of intracranial hemorrhage lesions.The depth-separable convolution is used to replace the normal convolutionto speed up the model training.A channel attention mechanism and a hybrid attention mechanism are added to the encoder and decoder,respectively.By introducing the SE module and CBAM module,the feature extraction capability of the original network is enhanced as well as the adaptive adjustment of the weights between different channels in the feature map to improve the performance of the model.The comparison experimental results show that the improved V-Net segmentation evaluation index DSC reaches 0.732,which is 4.4%better than the original V-Net.

deep learningV-Net modeldepth separable convolutionintracranial hemorrhage

徐睿、周长才、宋宇

展开 >

长春工业大学 计算机科学与工程学院,吉林 长春 130102

北京银行股份有限公司 济南分行,山东 济南 250000

深度学习 V-Net模型 深度可分离卷积 颅内出血

吉林省自然科学基金

20220101128JC

2024

长春工业大学学报
长春工业大学

长春工业大学学报

影响因子:0.282
ISSN:1674-1374
年,卷(期):2024.45(1)
  • 17