首页|基于GAT的Transformer多维时间序列异常检测

基于GAT的Transformer多维时间序列异常检测

扫码查看
针对多维时序数据中多个时间和多个变量之间的复杂依赖关系,无法准确地识别出少量异常点问题,提出一种基于GAT的Transformer多变量时间序列异常检测方法.首先,将特征转换为嵌入向量表示;然后,引入图注意力机制自适应地学习不同时间和不同变量之间复杂的依赖关系;最后,将原始数据与GAT层的输出拼接,输入带有位置编码的Transformer编码器,通过计算异常分数并设定阈值判定异常情况.结果表明,所提模型可以有效地检测出时序数据中的异常.
Transformer multivariate time series anomaly detection based on GAT
A multi variable time series anomaly detection method based on GAT Transformer is proposed to address the complex dependency relationships between multiple times and variables in multidimensional temporal data,which cannot accurately identify a small number of outliers.Firstly,convert the features into embedded vector representations;Then,the graph attention mechanism is introduced to adaptively learn the complex dependency relationships between different times and variables;Finally,concatenate the original data with the output of the GAT layer,input it into a Transformer encoder with positional encoding,and determine the anomaly situation by calculating the anomaly score and setting a threshold.The results indicate that the proposed model can effectively detect anomalies in temporal data.

anomaly detectiongraph attention networkTransformermultivariate time series

张素莉、钱晓淳、常依婷

展开 >

吉林化工学院信息与控制工程学院,吉林吉林 132000

长春工程学院计算机技术与工程学院,吉林长春 130012

异常检测 图注意力机制 Transformer 多维时间序列

吉林省科技厅项目

20210203103SF

2024

长春工业大学学报
长春工业大学

长春工业大学学报

影响因子:0.282
ISSN:1674-1374
年,卷(期):2024.45(2)