首页|一类SEIR时滞分数阶传染病模型的稳定性与分岔分析

一类SEIR时滞分数阶传染病模型的稳定性与分岔分析

扫码查看
建立了一类SEIR时滞分数阶传染病模型,将系统进行分数阶Laplace变换,计算了模型的特征矩阵和特征方程,利用再生矩阵法计算模型的基本再生数,证明了系统在无病平衡点P0和地方病平衡点P1的稳定性,另外,以时滞τ为参数,利用Hopf分岔理论给出了系统发生分岔的充分条件.
Stability and bifurcation analysis of a class of SEIR delayed fractional order infectious disease models
A class of SEIR delayed fractional order infectious disease model was established,and the system was subjected to fractional Laplace transform.The characteristic matrix and equation of the model were calculated,and the basic regeneration number of the model was calculated using the regeneration matrix method.The stability of the system at disease-free equilibrium point P0 and endemic equilibrium point P1 was proved.In addition,with time delay as a parameter,sufficient conditions for the system to bifurcate were given using Hopf bifurcation theory.

fractional order of time delayinfectious disease modelsequilibriumstabilityHopf bifurcation

李会芳

展开 >

晋中信息学院数理教学部,山西晋中 030805

时滞分数阶 传染病模型 平衡点 稳定性 Hopf分岔

山西省教育科学"十四五"规划课题

GH-230049

2024

长春工业大学学报
长春工业大学

长春工业大学学报

影响因子:0.282
ISSN:1674-1374
年,卷(期):2024.45(2)