首页|基于卷积神经网络的汽车图像损坏检测

基于卷积神经网络的汽车图像损坏检测

扫码查看
探讨卷积神经网络(CNN)在汽车图像中损坏识别的应用,通过收集包含不同损坏程度的汽车图像数据集构建一个CNN 模型,利用准确率等关键性能指标对该模型进行深入评估.实验对比多种损失函数对模型性能的影响,分析表明,采用稀疏类别交叉熵损失函数的CNN模型在性能表现上较为突出,其准确率达到 97%.这一发现证明,稀疏类别交叉熵在提升模型准确性方面的显著优势,本研究为利用 CNN 在汽车图像中实现损坏识别提供有力支持.
Vehicle image damage detection based on Convolutional Neural Networks
This study aims to explore the application of Convolutional Neural Networks(CNN)in the identification of damages in car images.By collecting a dataset of car images with varying degrees of damage,a CNN model was constructed and subjected to an in-depth evaluation using key performance indicators such as accuracy.The experiment compared the effects of various loss functions on model performance,and the analysis revealed that the CNN model employing Sparse Categorical Cross-Entropy loss function exhibited superior performance,achieving an accuracy rate of 97%.This finding demonstrates the significant advantage of Sparse Categorical Cross-Entropy in enhancing model accuracy.Overall,this research provides strong support for the use of CNN in the identification of damages in car images.

CNN(Convolutional Neural Networks)deep learningclassification modelvehicle image recognition

王纯杰、易铭瑒、谭佳伟

展开 >

长春工业大学 数学与统计学院,吉林 长春 130012

卷积神经网络 深度学习 分类模型 汽车图像识别

吉林省科技厅重大科技专项吉林省科技厅重大科技专项

20210301038GX20220301031GX

2024

长春工业大学学报
长春工业大学

长春工业大学学报

影响因子:0.282
ISSN:1674-1374
年,卷(期):2024.45(3)