首页|基于改进DenseNet的膝骨关节炎分类算法

基于改进DenseNet的膝骨关节炎分类算法

扫码查看
针对膝骨关节炎分类准确率低的问题,提出一种改进的 DenseNet算法.在Dense201模型的基础上,加入浅层卷积块,将浅层特征与深层特征拼接,丰富分类层判别信息.利用水平翻转、图像旋转等数据增强方法扩增数据集,使用迁移学习对模型进行训练,减少过拟合.对比实验结果表明,改进后的DenseNet模型分类准确率达到91.0%,与原始DenseNet201网络相比提高了分类准确性.
Knee osteoarthritis classification algorithm based on improved DenseNet network
Aiming at the problem of low classification accuracy of knee osteoarthritis,an improved DenseNet algorithm is proposed.On the basis of the Dense201 model,a shallow convolution block is added,and the shallow features are spliced with the deep features to enrich the discriminant information of the classification layer.Use data enhancement methods such as horizontal flipping and image rotation to expand the data set,and use transfer learning to train the model to reduce overfitting.The results of comparative experiments show that the classification accuracy of the improved DenseNet model reaches 91.0%,which improves the classification accuracy compared with the original DenseNet network.

knee osteoarthritismagnetic resonance imageDenseNetCNN(Convolutional Neural Network)

徐睿、刘爽、宋宇、王昕

展开 >

长春工业大学 计算机科学与工程学院,吉林 长春 130102

湖南涛尚医疗器械有限公司,湖南 长沙 410600

膝骨关节炎 磁共振图像 DenseNet 卷积神经网络

吉林省自然科学基金项目

20220101128JC

2024

长春工业大学学报
长春工业大学

长春工业大学学报

影响因子:0.282
ISSN:1674-1374
年,卷(期):2024.45(4)
  • 4