首页|极端梯度提升改进的森林优化特征选择算法

极端梯度提升改进的森林优化特征选择算法

扫码查看
针对传统的森林优化特征选择算法(FSFOA)处理分类任务时,存在初始化盲目和忽视降维率的问题,利用集成学习算法能够高效地对特征进行评价,提出一种用集成学习启发的,并带有重要性度量的初始化策略的改进方式,结合提出的后向删除最优子集选择策略得到一个新的特征选择算法,极端梯度提升改进的森林优化特征选择算法(FSFOAX).通过在来自7个不同维度的 UCI数据库的数据集上做对比实验,可以发现FSFOAX的性能优于FSFOA,即便是对比近年来性能优异的包裹式特征选择算法,FSFOAX在重要的分类准确率这一指标上也十分具有竞争力,说明FSFOAX在改进FSFOA的同时,更好地适用于特征选择任务.
Feature selection using forest optimization algorithm improved by XGBoost
The classical feature selection using forest optimization algorithm(FSFOA)faces issues related to blind initialization and disregarding dimension reduction when dealing with classification tasks.The ensemble learning algorithms can assess feature importance efficiently,so an improved approach using an ensemble learning-inspired initialization strategy with importance measurement is proposed.The new method is also combined with a backward elimination optimal subset selection strategy to create a novel feature selection algorithm called feature selection using forest optimization algorithm improved by xgboost(FSFOAX).Comparative experiments on seven different-dimensional datasets from the UCI database show that FSFOAX outperforms FSFOA.Even compared to recent high-performing wrapper-based feature selection algorithms,FSFOAX remains competitive regarding crucial classification accuracy.It indicates that FSFOAX improves upon FSFOA and is better suited for feature selection tasks.

feature selectionensemble learningevolutionary computationclassification

王丽、王涛

展开 >

吉林动画学院 游戏学院,吉林 长春 130012

长春工业大学 计算机科学与工程学院,吉林 长春 130102

特征选择 集成学习 演化计算 分类

吉林动画学院科学研究项目

KY22KZ08

2024

长春工业大学学报
长春工业大学

长春工业大学学报

影响因子:0.282
ISSN:1674-1374
年,卷(期):2024.45(4)
  • 9