首页|基于EWT和ESN模型的股价预测研究

基于EWT和ESN模型的股价预测研究

扫码查看
为了提高股票价格的预测精度,提出一种基于经验小波变换(EWT)、粒子群优化算法(PSO)和回声状态网络模型(ESN)的组合预测方法.首先使用信号分解算法将股价数据分解至不同的本征模态分量中;然后将本征模态分量进行相空间重构,利用粒子群算法优化回声状态网络分别对每个模态分量提取深度特征并进行预测;最后将各分量的预测值融合相加,得到最终预测结果.为了更好地衡量提出方法的可行性和效率,使用中证500、贵州茅台与三一重工三只股票价格序列来评估模型精度,实验结果表明,提出的方法对股票价格的预测精度高于其他预测模型.
Research on stock price prediction based on EWT and ESN models
In order to improve the prediction accuracy of stock price,this paper proposes a combination prediction method of stock price data based on empirical wavelet transform,particle swarm optimization algorithm and echo state network model.The basic framework of the data prediction model is as follows.Firstly,the signal decomposition algorithm is used to decompose the stock price data into different intrinsic mode components.The phase space of the intrinsic mode components is reconstructed and the particle swarm optimization algorithm is used to optimize the echo state network to extract the depth features of each mode component and predict it.Finally,the predicted values of each component are integrated to obtain the final predicted value.In order to better measure the feasibility and efficiency of the proposed method,three stock price series of China Securities 500,Kweichow Moutai and Sany Heavy Industry were used to evaluate the accuracy of the model.The experimental results show that the proposed method has higher prediction accuracy of stock prices than other prediction models.

stock price predictionempirical wavelet transformecho state networkcomposite pattern

邢蕾、姚佳红

展开 >

长春工业大学数学与统计学院,吉林长春 130012

股价预测 经验小波变换 回声状态网络 组合模型

2024

长春工业大学学报
长春工业大学

长春工业大学学报

影响因子:0.282
ISSN:1674-1374
年,卷(期):2024.45(5)