首页|融合机器视觉的桥梁动态称重方法

融合机器视觉的桥梁动态称重方法

扫码查看
为了进一步提升现有的桥梁动态称重技术,提出了 一种融合机器视觉的桥梁动态称重系统.首先,利用机器视觉算法对车辆进行识别和追踪;其次,对车辆作用下的桥梁响应监测信息进行处理;然后,利用虚拟简支梁理论对轴重、轴距进行识别;最后,通过模拟分析和室内试验的方式对本文方法的准确性进行检验.结果表明:本文方法在多种工况下,对车辆的轴重、轴距都具有较好的识别效果;轴重、轴距、总重识别平均相对误差分别为3.40%、4.31%和2.71%,并且具有一定的抗噪能力.
Bridge weigh-in-motion combined with machine version
To further improve the existing bridge weigh-in-motion technique,this paper proposes a bridge weigh-in-motion system integrated with machine vision.Firstly,the machine vision algorithm is used to identify and track the vehicle;then,the bridge response monitoring information under the action of the vehicle is processed;furthermore,the axle load and axle base are identified by using the virtual simply-supported beam theory;finally,the method is tested by simulation and test.The results show that the method proposed in this paper has a good identification effect on the axle weight and wheelbase of vehicles under various working conditions.The average relative errors of the identification of axle weight,wheelbase and total weight are 3.40%,4.31%and 2.71%respectively.It has a certain anti-noise ability,which shows that the method has good robustness and applicability.

bridge engineeringbridge weigh-in-motionmachine visionvirtual simply-supported beam

龙关旭、张修石、辛公锋、王涛、杨干

展开 >

山东高速集团有限公司创新研究院,济南 250101

长安大学公路学院,西安 710064

山东省高速公路技术和安全评估重点实验室,济南 250101

桥梁工程 桥梁动态称重 机器视觉 虚拟简支梁

国家重点研发计划国家自然科学基金国家自然科学基金山东省交通厅科技项目交通运输行业重点科技项目山东省自然科学基金青年基金

2021YFB1600300518708058520080272021B512021-ZD1-011ZR2020QE261

2024

吉林大学学报(工学版)
吉林大学

吉林大学学报(工学版)

CSTPCD北大核心
影响因子:0.792
ISSN:1671-5497
年,卷(期):2024.54(1)
  • 24