首页|多特征融合和孪生注意力网络的高分辨率遥感图像目标检测

多特征融合和孪生注意力网络的高分辨率遥感图像目标检测

扫码查看
为提高高分辨率遥感图像目标检测效果,本文将多特征融合方法和孪生注意力网络相结合,提出一种新的目标检测方法。构建遥感图像目标检测的整体框架,基于锚框模型对遥感图像目标进行多层特征的提取及融合;运用孪生注意力网络对遥感图像目标实时视觉跟踪检测,引入通道和空间的双重 自注意力机制,提高目标图像的特征表达能力,由此得到更加精准的检测结果。实验分析结果表明,本文方法的平均总体精度为93。8,F1指数平均值为0。88,Kappa系数平均值为0。93,均明显高于对比方法,说明本文方法具有较好的检测效果。
Object detection in high-resolution remote sensing images based on multi-feature fusion and twin attention network
In order to improve the effect of object detection in high-resolution remote sensing images,this paper proposes a new object detection method by combining multi-feature fusion method and twin attention network.The overall framework of remote sensing image target detection is constructed,and the multi-layer features of remote sensing image target are extracted and fused based on the anchor frame model.The twin attention network is used for real-time visual tracking and detection of remote sensing image targets,and the dual self-attention mechanism of channel and space is introduced to improve the feature expression ability of target images,so as to get more accurate detection results.Through the analysis of experiments,the average overall accuracy of the proposed method is 93.8,the average F1 index is 0.88,and the average Kappa coefficient is 0.93,which are significantly higher than the comparison method,indicating that the proposed method has a good detection effect.

multi-feature fusionhigh resolutionremote sensing imagetwin attentionobject detectionsemantic features

王春华、李恩泽、肖敏

展开 >

黄淮学院动画学院,河南驻马店 463000

武汉理工大学计算机与人工智能学院,武汉 430063

多特征融合 高分辨率 遥感图像 孪生注意力 目标检测 语义特征

国家自然科学基金中国博士后科学基金河南省高等学校重点科研项目

617713542022M71248422A880014

2024

吉林大学学报(工学版)
吉林大学

吉林大学学报(工学版)

CSTPCD北大核心
影响因子:0.792
ISSN:1671-5497
年,卷(期):2024.54(1)
  • 1
  • 22