首页|基于弱监督迁移网络的3D人体关节点识别

基于弱监督迁移网络的3D人体关节点识别

扫码查看
针对2D图像缺少深度信息,行为姿态空间结构信息不完备的问题,提出一种基于弱监督迁移网络的3D人体关节点识别方法。首先,提出一种用于真实图像的端到端3D人体姿态估计框架,使用2D与3D混合标签图像对深度神经网络进行训练,在2D人体姿态识别子网络中,添加深度回归模块对2D人体姿态识别子网络进行改进,解决3D人体姿态识别出现的深度歧义性问题;其次,在3D人体姿态识别子网络中,引入3D几何约束对人体姿态识别进行规范化操作,针对无真实深度标签的情况,可更好地学习深度特征,有效解决存在遮挡情况的人体姿态识别问题。在Human 3。6M和MPⅡ数据集中关节点预测平均误差低于其他方法,具有更好的3D人体姿态识别效果。
3D human joint point recognition based on weakly supervised migration network
Aiming at the lack of depth information and incomplete spatial structure information of behavior and posture in 2D images,a 3D human joint point recognition method based on weak supervised migration network is proposed.Firstly,an end-to-end 3D human pose estimation framework for real images is proposed.The depth neural network is trained with 2D and 3D mixed label images.In the 2D human pose recognition sub network,the depth regression module is added to improve the 2D human pose recognition sub network to solve the problem of depth ambiguity in 3D human pose recognition;Secondly,in the 3D human pose recognition sub network,3D geometric constraints are introduced to standardize the human pose recognition.For the case of no real depth label,it can better learn the depth features and effectively solve the problem of human pose recognition with occlusion.In human 3.6m and mpii data sets,the average error of joint point prediction is lower than that of other methods,and has better 3D human posture recognition effect.

migration networkpose recognition3D joint pointsgeometric constraintsdepth regression

孙志勇、李宏友、叶俊勇

展开 >

重庆大学光电技术教育部重点实验室,重庆 400044

重庆警察学院基础教研部,重庆 401331

迁移网络 姿态识别 3D关节点 几何约束 深度回归

国家重点研发计划重庆市教委科学技术研究计划重庆市基础研究及前沿技术研究计划

2020YFC1522905KJQN201901710cstc2018jcyjAX0633

2024

吉林大学学报(工学版)
吉林大学

吉林大学学报(工学版)

CSTPCD北大核心
影响因子:0.792
ISSN:1671-5497
年,卷(期):2024.54(1)
  • 26