首页|基于多尺度融合的遥感图像变化检测模型

基于多尺度融合的遥感图像变化检测模型

扫码查看
为精准识别双时相遥感图像的变化区域,提出了一种基于多尺度融合的遥感图像变化检测模型.该模型在源图像特征提取阶段构造多尺度输入金字塔,接受多层次的感受野,增强对特征信息的感知;并通过对深层差异特征进行多尺度计算,实现精准定位变化区域与充分挖掘细节信息间的平衡;同时融合网络不同层级的差异特征检测结果,极大程度识别并保留语义变化信息.实验结果表明:本文模型在主观评价与客观指标上都具有良好的表现效果.
Remote sensing change detection model based on multi-scale fusion
The remote sensing image change detection model which is based on multi-scale fusion is proposed to accurately identify the change region of the bi-temporal remote sensing images.First,a multi-scale input pyramid is constructed in the feature extraction stage to receive multi-layer receptive fields and enhance the perception of all information.Then,in order to make a tradeoff between locating the changing area and mining details,the multi-scale calculation is carried out for deep difference features.Finally,the semantic change information can be identified and retained to a great extent by integrating the different feature results of the network.The experimental results show that the proposed model has good performance in both subjective evaluation and objective indexes.

change detectionmulti-scale fusionremote sensing imagedeep learning

李雄飞、宋紫萱、朱芮、张小利

展开 >

吉林大学 计算机科学与技术学院,长春 130012

变化检测 多尺度融合 遥感图像 深度学习

国家自然科学基金项目吉林省自然科学基金项目中国博士后基金面上项目吉林省"十三五"教育科研规划项目吉林省"十三五"教育科研规划项目中央高校基本科研业务费专项资金项目

6180119020180101055JC2017M611323JJKH2020997KJJJKH20200678KJ93K172020K05

2024

吉林大学学报(工学版)
吉林大学

吉林大学学报(工学版)

CSTPCD北大核心
影响因子:0.792
ISSN:1671-5497
年,卷(期):2024.54(2)
  • 22