首页|基于改进混沌优化的选择性催化还原系统参数辨识方法

基于改进混沌优化的选择性催化还原系统参数辨识方法

扫码查看
针对选择性催化还原系统(SCR)系统在工作过程中,模型参数会受到老化、损耗等影响发生偏移,特别是催化剂硫中毒会造成氨的最大吸附能力严重下降,导致SCR系统失效的问题,提出了融合加速混沌优化和单一搜索(SCOA+SSA)算法的参数在线辨识方法.该方法能同时辨识SCR系统化学反应动力学中8项关键参数.试验结果表明:该方法能在SCR系统中氨的最大吸附能力阶跃下降时,实时辨识得到新的系统参数;并且,相比于传统的SCOA方法,本文提出的SCOA+SSA方法能将辨识精度提高5.44%,但付出的代价是增加了2.9%的耗时.
Parameter identification for SCR systems based on improved chaos optimization algorithm
The SCR system is an important component of the emission aftertreatment systems for diesel engines and is primarily responsible for reducing NOx emissions.With increasingly stringent emission regulations,the control technology based on precise models for SCR systems is becoming an inevitable choice.During the working process of SCR systems,the model parameters will be shifted due to aging,wear and other effects.In particular,catalyst sulfur poisoning can cause a severe drop in the maximum ammonia adsorption capacity,which can lead to the failure of the SCR system.In this paper,a stepped-up chaos optimization algorithm with single search algorithm(SCOA+SSA)is proposed to solve multi-parameter online identification for SCR systems.This method can simultaneously identify eight key parameters in the chemical reaction kinetics of the SCR system.The experimental results show that this method can identify new system parameters in real time when the maximum adsorption capacity of ammonia decreases in steps,that as compared to the traditional SCOA method,the identification accuracy of the proposed SCOA+SSA method is improved by 5.44%with a computational time penalty of 2.9%.

automatic control technologyparameter online identificationstepped-up chaos optimization algorithmSCR systems

赵靖华、杜世豪、刘靓葳、胡云峰、孙耀、解方喜

展开 >

吉林师范大学 计算机学院,吉林 四平 136002

吉林大学 汽车仿真与控制国家重点实验室,长春 130022

长春金融高等专科学校 信息技术学院,长春 130028

自动控制技术 参数在线辨识 加速混沌优化算法 选择性催化还原系统

吉林省科技厅项目汽车仿真与控制国家重点实验室开放课题项目汽车仿真与控制国家重点实验室开放课题项目

20210203102SF20191201JJ-KH20210786KJ

2024

吉林大学学报(工学版)
吉林大学

吉林大学学报(工学版)

CSTPCD北大核心
影响因子:0.792
ISSN:1671-5497
年,卷(期):2024.54(2)
  • 20