首页|基于改进YOLOv5s的桥梁螺栓缺陷识别方法

基于改进YOLOv5s的桥梁螺栓缺陷识别方法

扫码查看
针对现有算法在检测桥梁螺栓缺陷时因螺栓背景复杂和尺寸较小而导致的特征提取不充分、目标定位不精确问题,提出了一种基于改进YOLOv5s的桥梁螺栓缺陷识别方法.该方法在骨干网络中引入注意力机制以提升模型对螺栓特征的提取能力并加深对螺栓全局特征的关注度;优化空间金字塔池化结构以减少螺栓特征信息流失;采用MPDIoU作为边界框回归损失函数,提高螺栓边界框的回归精度;将YOLO检测头解耦以消除目标检测中分类任务和回归任务共享检测头对边界框位置回归的负面影响.在螺栓锈蚀、螺栓松动、螺栓脱落和螺母脱落4类典型缺陷螺栓以及正常螺栓的3810张自制螺栓图像数据集上进行训练和测试,实验结果表明:本文算法对螺栓缺陷的检测精度达到90.8%,相较于YOLOv5s提升了3%,均值平均精度达到92.6%,相较于YOLOv5s提升了4.3%,可以应用于桥梁螺栓的缺陷智能识别.
Bridge bolt defect identification method based on improved YOLOv5s
To address the issue of insufficient feature extraction and imprecise target localization in existing algorithms for detecting bridge bolt defects due to the complexity of bolt backgrounds and their small size,a bridge bolt defect recognition method based on enhanced YOLOv5s was proposed.Attention mechanisms in the backbone network was introduced to enhance the model's ability to extract bolt features and deepen its focus on global bolt characteristics.The spatial pyramid pooling structure was optimized to reduce the loss of bolt feature information.MPDIoU was employed as the bounding box regression loss function to improve the accuracy of bolt bounding box regression.The YOLO detection head was decoupled to eliminate the adverse effects of shared detection head in target detection on the regression of bounding box positions.Training and testing were conducted on 3810 self-made bolt image datasets of four typical defects:bolt rusting,bolt loosening,bolt detachment,and nut detachment,as well as normal bolts.Experimental results show that the algorithm achieves a detection accuracy of 90.8%for bolt defects,which is a 3%improvement over YOLOv5s,and a mean average precision of 92.6%,representing a 4.3%improvement over YOLOv5s.This method can be applied for intelligent recognition of bolt defects in bridges.

bridge engineeringbolt defect identificationYOLOv5sbridge bolts

张洪、朱志伟、胡天宇、龚燕峰、周建庭

展开 >

重庆交通大学 省部共建山区桥梁及隧道工程国家重点实验室,重庆 400074

重庆交通大学 信息科学与工程学院,重庆 400074

重庆交通大学 航运与船舶工程学院,重庆 400074

桥梁工程 螺栓缺陷识别 YOLOv5s 桥梁螺栓

国家自然科学基金项目国家自然科学基金项目重庆市自然科学基金项目重庆市自然科学基金项目重庆交通大学研究生科研创新项目

52278291U20A20314CSTB2022NSCQ-LZX0006CSTB2022TIAD-KPX02052023S0083

2024

吉林大学学报(工学版)
吉林大学

吉林大学学报(工学版)

CSTPCD北大核心
影响因子:0.792
ISSN:1671-5497
年,卷(期):2024.54(3)
  • 21