首页|基于改进遗传算法的湿式离合器压力自适应控制

基于改进遗传算法的湿式离合器压力自适应控制

扫码查看
以提升拖拉机动力换挡变速箱(PST)湿式离合器压力控制准确性为目标,提出了一种基于改进遗传算法的湿式离合器压力无模型自适应控制方法.首先,分析并建立了湿式离合器液压系统数学模型,基于偏格式动态线性化的无模型自适应控制(PFDL-MFAC)算法构建了离合器压力控制器.然后,引入变比例精英保留策略、K-均值聚类算法和灾变策略改进遗传算法,提出了基于灵敏度分析和改进遗传算法的PFDL-MFAC控制器参数整定方法.最后,开展了基于拖拉机自动变速箱控制单元(TCU)硬件在环试验平台的离合器压力控制试验.结果表明:改进遗传算法的收敛速度和优化精度更好;与PID控制相比,PFDL-MFAC的离合器压力响应速度更快、鲁棒性更好,满足拖拉机湿式离合器压力控制要求;同时,基于本文算法的变速箱换挡品质更优,研究成果可为动力换挡拖拉机换挡品质的提升提供基础.
Adaptive control of wet clutch pressure based on improved genetic algorithm
Aiming to improve the accuracy of wet clutch pressure control of tractor power shift transmission(PST),a model-free adaptive control method for wet clutch pressure based on improved genetic algorithm is proposed.Firstly,the mathematical model of the wet clutch hydraulic system was analyzed and established,and the clutch pressure controller was constructed based on the partial form dynamic linearization based model free adaptive control(PFDL-MFAC)algorithm.Then,the variable-proportion elite retention strategy,K-means clustering algorithm and catastrophe strategy were introduced to improve the genetic algorithm,and a PFDL-MFAC controller parameter tuning method based on sensitivity analysis and improved genetic algorithm was proposed.Finally,the clutch pressure control test based on the tractor transmission control unit(TCU)hardware-in-the-loop test platform was carried out.The results show that the improved genetic algorithm has better convergence speed and optimization accuracy.Compared with PID,PFDL-MFAC has faster clutch pressure response and better robustness,which can meet the requirements of tractors.At the same time,the shifting quality of the transmission based on the algorithm in this paper is better.The research results provide a basis for improving the shifting quality of power-shift tractors.

agricultural engineeringtractorwet clutchmodel free adaptive controlgenetic algorithm

张延安、杜岳峰、孟青峰、栗晓宇、刘磊、朱忠祥

展开 >

中国农业大学 工学院,北京 100083

农业工程 拖拉机 湿式离合器 无模型自适应控制 遗传算法

国家重点研发计划项目烟台市校地融合发展项目

2020YFB17135022021XDRHXMPT29

2024

吉林大学学报(工学版)
吉林大学

吉林大学学报(工学版)

CSTPCD北大核心
影响因子:0.792
ISSN:1671-5497
年,卷(期):2024.54(3)
  • 26