首页|基于分层卷积自编码器的钝体湍流流场降阶分析

基于分层卷积自编码器的钝体湍流流场降阶分析

扫码查看
本文采用了一种非线性的分层卷积自编码器,类比于本征正交分解的方法,可以对提取到的低维特征进行能量排序,同时又能在一定范围内达到更高的降阶性能。文中以雷诺数为20 000的三维圆柱钝体湍流尾迹流动为例,分析分层卷积自编码器对该流场的降阶能力,并与本征正交分解的结果作对比。同时,在此基础上延伸出组合模态的概念,并增加每一组低维潜在向量数,观察重构流场与原始流场的均方误差变化。结果表明,在分层层数及每层潜在空间向量数较少时,非线性的分层卷积自编码器相对于本征正交分解的方法对流场有更强的还原能力,但是其优势会随着层数和潜在向量数的增加而减弱。
Reduced-order modelling of a bluff body turbulent wake flow field using hierarchical convolutional neural network autoencoder
In this study,a nonlinear hierarchical convolutional autoencoder(H-CNN-AE)is employed to sort the energy content of the latent vectors of AE,which is analogous to the method of proper orthogonal decomposition(POD),and at the same time result in better performance in terms of reduced-order modelling within limits.This method is applied to a turbulent wake behind a three-dimensional circular cylinder bluff body at Re=20 000.We assess the ability of H-CNN-AE with L2 error and compares it with the results of POD.Furthermore,the concept of grouping AE-modes is extended.We observe the change of mean square error between the reconstructed and the original flow when adding the number of latent vectors of each group.It is demonstrated that when the number of subnetworks and low-dimensional vectors in latent space of each subnetwork is small,H-CNN-AE has better capability to restore the flow field than POD.However,it is also found that the strength of H-CNN-AE will weaken with the increase of the number of subnetworks and latent AE modes and will even be inferior to POD under certain conditions.

hierarchical autoencoderconvolutional neural networkbluff body turbulent wakereduced order model

夏超、王梦佳、朱剑月、杨志刚

展开 >

同济大学 汽车学院,上海 201804

同济大学 上海地面交通工具风洞中心,上海 201804

同济大学铁道与城市轨道交通研究院,上海 201804

北京民用飞机技术研究中心,北京 102211

展开 >

分层自编码器 卷积神经网络 钝体湍流尾迹 降阶模型

国家自然科学基金国家自然科学基金国家自然科学基金上海市地面交通工具空气动力与热环境模拟重点实验室项目

51905381518754115237236023DZ2229029

2024

吉林大学学报(工学版)
吉林大学

吉林大学学报(工学版)

CSTPCD北大核心
影响因子:0.792
ISSN:1671-5497
年,卷(期):2024.54(4)
  • 21