吉林大学学报(工学版)2024,Vol.54Issue(4) :1129-1135.DOI:10.13229/j.cnki.jdxbgxb.20221560

基于改进MOEA/D算法的含可再生能源系统协同优化调度

Collaborative optimal scheduling of renewable energy systems based on improved MOEA/D algorithm

赵新刚 王桢
吉林大学学报(工学版)2024,Vol.54Issue(4) :1129-1135.DOI:10.13229/j.cnki.jdxbgxb.20221560

基于改进MOEA/D算法的含可再生能源系统协同优化调度

Collaborative optimal scheduling of renewable energy systems based on improved MOEA/D algorithm

赵新刚 1王桢1
扫码查看

作者信息

  • 1. 华北电力大学 经济与管理学院,北京 102206;新能源电力与低碳发展研究北京市重点实验室,北京 102206
  • 折叠

摘要

针对含可再生能源系统协同优化调度方法存在SOC值控制约束能力差、调度能耗高的缺点,提出基于改进MOEA/D算法的含可再生能源系统协同优化调度方法.首先构建含可再生能源系统中关键发电模型,分别为光伏阵列模型、风力发电模型以及储能蓄电池模型,然后以能耗最低为目标,构建出系统的协同优化调度函数,得出电功率及热功率平衡的函数约束条件,最后利用改进MOEA/D算法求解出函数最优解,实现含可再生能源系统协同优化调度.实验结果表明,本文方法的SOC值控制约束能力好,SOC值控制结果最接近理想状态,在环保性最优准则下系统调度能耗低,24 h能耗功率为0.6 kW.

Abstract

Microgrid with renewable energy system has high economy and environmental protection,and requires system load to be flexible and controllable,that is,resources can be coordinated for scheduling operation.Therefore,a collaborative optimal scheduling method for renewable energy system based on improved MOEA/D algorithm is proposed.Build key power generation models in renewable energy systems,including photovoltaic array model,wind power generation model and energy storage battery model.With the lowest energy consumption as the goal,build the system′s collaborative optimal scheduling function,obtain the functional constraints of electric power and thermal power balance,and use the improved MOEA/D algorithm to solve the optimal solution of the function to achieve the collaborative optimal scheduling of renewable energy systems.The experimental results show that the proposed method has good SOC value control constraint ability,and the SOC value control result is the closest to the ideal state.Under the environmental optimization criterion,the system scheduling energy consumption is low,and the 24-hour energy consumption power is 0.6 kW.

关键词

MOEA/D算法/光伏发电/含可再生能源系统/协同优化调度/电力能耗

Key words

MOEA/D algorithm/photovoltaic power generation/including renewable energy system/collaborative optimal scheduling/power consumption

引用本文复制引用

基金项目

国家自然科学基金(71273088)

中央高校基本科研业务费专项(2020YJ008)

出版年

2024
吉林大学学报(工学版)
吉林大学

吉林大学学报(工学版)

CSTPCD北大核心
影响因子:0.792
ISSN:1671-5497
参考文献量20
段落导航相关论文