首页|汽车漆面缺陷高精度检测系统

汽车漆面缺陷高精度检测系统

扫码查看
汽车涂装过程中产生的漆面缺陷影响着整车外观质量,针对人工检测存在漏检、低效以及传统检测方案的高实施成本等问题,提出了一种基于改进YOLOv7算法的汽车漆面缺陷检测系统。构建了汽车漆面缺陷数据集,共有 4023张图像,其中包含 5种常见汽车漆面缺陷;针对YOLOv7算法在微小缺陷上检测精度不足的问题,在原网络中引入了GAM注意力机制和SPPFCSPC模块,用于提高算法对微小缺陷特征的提取能力,同时采用改进的ELAN模块对网络结构进行改进,减少网络过深造成的小目标信息丢失问题,保证在减轻网络模型的同时提高网络对微小特征的识别精度;实验结果表明:本文方法大幅提升了对微小漆面缺陷的检测性能,缺陷的平均检测精度达到了 88。9%,与多种算法相比检测精度最高。
High precision detection system for automotive paint defects
The paint defects that exist during the automotive painting process affect the overall appearance quality of the car.In response to the problems of missed inspection,low efficiency,and high implementation cost of traditional inspection schemes in manual inspection,a paint defect detection method based on the improved YOLOv7 algorithm is proposed.A dataset of automotive paint defects was constructed,consisting of 4023 images,including 5 types of automotive paint defects;In response to the problem of insufficient detection accuracy of YOLOv7 algorithm on small defects,GAM attention mechanism and SPPFCSPC module were introduced into the original network to improve the algorithm's ability to extract small defect features.At the same time,an improved ELAN module was used to improve the network structure to reduce the problem of small target information loss caused by deep network,ensuring that the network model is reduced while improving the recognition accuracy of small features;Based on the constructed dataset,the defect detection performance of different algorithms was tested and the effectiveness of the module was verified.The experimental results show that this method significantly improves the detection ability of small defects on paint surfaces,with an average detection accuracy of 88.9%,which is the highest detection accuracy compared to various algorithms.

vehicle engineeringautomotive paint surfacedefect detectiondeep learning

陆玉凯、袁帅科、熊树生、朱绍鹏、张宁

展开 >

浙江大学 动力机械及车辆工程研究所,杭州 310014

浙江吉利汽车有限公司,杭州 310051

燕山大学机械工程学院,河北 秦皇岛 066004

龙泉产业创新研究院,浙江 龙泉 323700

展开 >

车辆工程 汽车漆面 缺陷检测 深度学习

工信部重点领域及特定场景工业互联网平台应用项目工信部5G+工业互联网高质量网络和公共服务平台离散行业高质量网络项目

TC200802DTC200A00N

2024

吉林大学学报(工学版)
吉林大学

吉林大学学报(工学版)

CSTPCD北大核心
影响因子:0.792
ISSN:1671-5497
年,卷(期):2024.54(5)
  • 21