首页|二阶K近邻和多簇合并的密度峰值聚类算法

二阶K近邻和多簇合并的密度峰值聚类算法

扫码查看
针对流形数据中密度峰值聚类(DPC)算法的局部密度易找到错误的类簇中心,且分配策略易导致远离类簇中心的剩余样本被错误分配的问题,本文提出二阶K近邻和多簇合并的密度峰值聚类(DPC-SKMM)算法.首先,利用最小二阶K近邻定义局部密度,凸显类簇中心与非类簇中心间的密度差异,从而找到正确的类簇中心;其次,利用K近邻找出样本局部代表点并依此确定核心点,用核心点指导微簇划分;最后,利用最小二阶K近邻及共享近邻定义的微簇间吸引度合并微簇,避免远离类簇中心的样本被错误分配,且微簇合并过程无须迭代.本文将DPC-SKMM算法与IDPC-FA、DPCSA、FNDPC、FKNN-DPC、DPC算法进行对比,实验结果表明,DPC-SKMM算法能有效聚类流形及UCI数据集.
Density peaks clustering with second-order K-nearest neighbors and multi-cluster merging
In the face of manifold data,the local density of density peaks clustering(DPC)algorithm is easy to find the wrong cluster center and the allocation strategy is easy to cause the residual samples far from the cluster center to be misallocation.In view of the above problems,this paper proposes density peaks clustering with second-order K-nearest neighbors and multi-cluster merging.Firstly,the minimum second-order K-nearest neighbor is used to define the local density,highlighting the density difference between the cluster center and the non-cluster center,so as to find the correct cluster center;Secondly,the K-nearest neighbor is used to find the local representative points of the sample and determine the core points,and the core points are used to guide the micro-cluster division;Finally,the inter-cluster attraction defined by the minimum second-order K-nearest neighbor and shared nearest neighbor is used to merge the micro-clusters,which avoids the misallocation of samples away from the cluster center,and the micro-cluster merging process does not require iteration.In this paper,DPC-SKMM algorithm is compared with IDPC-FA,DPCSA,FNDPC,FKNN-DPC,DPC algorithm.Experimental results show that DPC-SKMM algorithm can cluster manifolds and UCI data sets effectively.

density peaks clusteringmanifold datasecond-order K-nearest neighborsK-nearest neighborattractivenessmulti-cluster merging strategy

吕莉、朱梅子、康平、韩龙哲

展开 >

南昌工程学院 信息工程学院,南昌 330099

南昌工程学院 南昌市智慧城市物联感知与协同计算重点实验室,南昌 330099

密度峰值聚类 流形数据 二阶K近邻 K近邻 吸引度 多簇合并策略

国家自然科学基金国家自然科学基金

6206603061962036

2024

吉林大学学报(工学版)
吉林大学

吉林大学学报(工学版)

CSTPCD北大核心
影响因子:0.792
ISSN:1671-5497
年,卷(期):2024.54(5)
  • 23