首页|基于高分辨率孪生网络的无人机目标跟踪算法

基于高分辨率孪生网络的无人机目标跟踪算法

UAV target tracking algorithm based on high resolution siamese network

扫码查看
针对无人机(UAV)目标跟踪任务中目标尺寸小、尺度变化明显和视点改变频繁等问题,本文提出一种基于高分辨率孪生网络的无人机目标跟踪算法.首先,利用改进高分辨率网络作为特征提取主干网络,并且采用动态多模板策略挖掘视频的帧间信息;然后,构建多帧特征融合模块,得到利于目标定位的融合特征;最后,选取无锚框策略定位目标位置,得到精确的跟踪结果.实验结果表明:本文算法在DTB70数据集测试的成功率和准确率分别为66.0%和84.7%,在UAV123数据集测试的成功率和准确率分别为65.7%和84.3%,有效地提升了目标跟踪性能.
Unmanned Aerial Vehicle(UAV)target tracking tasks are often suffer from small target size,large scale variance and frequent viewpoint change.To address these issues,in this paper,an UAV target tracking algorithm based on high-resolution siamese network is proposed.Firstly,a high-resolution network is improved as the feature extraction backbone network(Lite-high resolution network,L-HRNet),and a dynamic multi-template strategy is used to mine the inter-frame information of the video.Secondly,a multi-frame feature fusion module is constructed to obtain fusion features that are beneficial to target localization.Finally,an anchor-free strategy is selected to locate the target position and obtain accurate tracking results.The experimental results show that the success rate and accuracy of the proposed algorithm are 66.0%and 84.7%on DTB70 dataset,65.7%and 84.3%on UAV123 dataset respectively,which improves the target tracking performance effectively.

computer visiontarget trackingunmanned aerial vehiclehigh-resolution siamese networkmulti-frame feature

王殿伟、张池、房杰、许志杰

展开 >

西安邮电大学 通信与信息工程学院,西安 710121

哈德斯菲尔德大学 计算机与工程学院,哈德斯菲尔德HD13DH

计算机视觉 目标跟踪 无人机 高分辨率孪生网络 多帧特征

国家自然科学基金青年基金西安邮电大学研究生创新基金

62201454CXJJLY2021053

2024

吉林大学学报(工学版)
吉林大学

吉林大学学报(工学版)

CSTPCD北大核心
影响因子:0.792
ISSN:1671-5497
年,卷(期):2024.54(5)
  • 29