首页|基于改进神经网络和Fluent的气液固技术的内表面处理

基于改进神经网络和Fluent的气液固技术的内表面处理

扫码查看
针对目前航空、航天工件内孔表面有凸起毛刺且不容易去除的问题,提出一种气液固多相流技术方法。基于Fluent数值分析对多相流下的不同气体压力、水流速度和磨粒浓度参数进行流体仿真,得到影响加工的近壁区内表面处的磨粒速度、相对压力及磨粒体积分数参数,采用MATLAB软件利用BP神经网络对各参数进行拟合,通过BP预测模型再运用PSO(粒子群算法)在支配解集中求解满足约束数学模型的气液固三相流最优输入值,基于最优输入值搭建试验平台并设计L9(33)正交试验对工件内表面进行加工,最后通过白光干涉仪测量加工前后的内孔表面精度,验证了仿真最优参数与试验加工最优参数的一致性,运用最优参数值下的气液固流体对工件内表面加工,经测量显示,内表面精度提高了75%,满足航空航天工件的应用要求。
Internal surface treatment of gas-liquid-solid technology based on improved neural network and Fluent
At present,the manufacturing methods of complex multi-bore workpieces in aviation and aerospace often have raised burrs on the inner bore surface of the workpieces,which are not easy to remove.In view of this situation,a gas-liquid-solid multiphase flow technology is proposed to treat the inner surface of complex workpieces.Based on fluent numerical analysis,different gas pressure,water velocity and abrasive particle concentration parameters under multiphase flow are simulated.The parameters of abrasive particle velocity,relative pressure and abrasive particle volume fraction at the inner surface of the near-wall area which affect the machining are obtained.The parameters are fitted by using BP neural network with MATLAB software,and the optimal input value of gas-liquid-solid three-phase flow satisfying the constraint mathematical model is solved by using the BP prediction model and PSO(Particle Swarm Optimization)in the dominant solution set.Based on the optimal input value,an experimental platform is built and L9(33)orthogonal experiment is designed to machine the inner surface of the workpiece.Finally,the surface accuracy of the inner hole before and after machining is measured by a white light interferometer,which verifies the consistency between the simulation optimal parameters and the experimental optimal parameters.The inner surface of the workpiece is machined by using the gas-liquid-solid three-phase flow with the optimal parameters.The measurement shows that the inner surface accuracy is increased by 75%,which meets the application requirements of aerospace workpieces.

machinery manufacturing technology and equipmentgas-solid technologyfluid simulationneural networkparticle swarm optimization:orthogonal experiment

李光保、高栋、路勇、平昊、周愿愿

展开 >

上海航天精密机械研究所,上海 201600

哈尔滨工业大学 机电工程学院,哈尔滨 150001

机械制造工艺与设备 气液固技术 流体仿真 神经网络 粒子群算法 正交试验

国家重点研发计划项目

2018YFB1306803

2024

吉林大学学报(工学版)
吉林大学

吉林大学学报(工学版)

CSTPCD北大核心
影响因子:0.792
ISSN:1671-5497
年,卷(期):2024.54(6)
  • 14