首页|基于稀疏多头自注意力的轨迹kNN查询方法

基于稀疏多头自注意力的轨迹kNN查询方法

扫码查看
针对基于位置信息的应用产生的时空数据体积量巨大且带有经纬度、时间等多维属性,基于索引的轨迹查询方法无法获取轨迹的时空语义特征,其轨迹表示方式忽略了轨迹的时空相关性并且对于大规模轨迹数据查询效率较低的问题,提出了一种基于稀疏多头自注意力机制的轨迹编码器。通过轨迹编码器可以提取轨迹的高阶语义特征,将轨迹表示为轨迹编码向量。在轨迹编码向量的基础上,提出了一种基于局部敏感哈希函数的轨迹查询方法,可以快速对大规模轨迹数据进行查询。理论研究和实验结果表明:本文轨迹查询方法在查询准确率和查询效率上优于目前已有的轨迹查询方法。
Trajectory k nearest neighbor query method based on sparse multi-head attention
The application of location information generates a large volume of spatio-temporal data with multidimensional attributes such as latitude,longitude and time.The index-based trajectory query method cannot obtain the spatio-temporal semantic features of the trajectory,and its trajectory representation ignores the spatio-temporal correlation of the trajectory and is inefficient for large-scale trajectory data query.To solve the above problems,a kind of trajectory encoder based on sparse multi-head attention is proposed,through the trajectory of the encoder can extract high-level semantic features,trajectories are represented as encoding vectors.On the basis of trajectory coding vector,a trajectory query method based on locally sensitive hash function is developed,which can query large-scale trajectory data quickly.The experiment results show that the proposed trajectory query method can effectively deal with kNNT query problems and it is superior to the current trajectory query method in terms of accuracy and efficiency.

computer applicationspatio-temporal datatrajectory data miningdeep learningtrajectory representation learningmulti-head self-attention

张丽平、刘斌毓、李松、郝忠孝

展开 >

哈尔滨理工大学 计算机科学与技术学院,哈尔滨 150080

计算机应用 时空数据 轨迹数据挖掘 深度学习 轨迹表示学习 多头自注意力

国家自然科学基金项目黑龙江省自然科学基金项目国家重点研发计划项目

62072136LH2023F0312020YFB1710200

2024

吉林大学学报(工学版)
吉林大学

吉林大学学报(工学版)

CSTPCD北大核心
影响因子:0.792
ISSN:1671-5497
年,卷(期):2024.54(6)
  • 6