首页|基于最小二乘的车速解耦路面辨识方法

基于最小二乘的车速解耦路面辨识方法

扫码查看
针对路面辨识方法需要大量训练集或高的算力支撑不利于驾乘感提升实现的问题,提出了一种改进的最小二乘估计方法,无需训练集,直接采集悬架响应来辨识路面激励及路面等级变化。在建立的路面等级系数和车速为变参数模型的基础上,探讨路面激励数据的取样处理规则,通过解耦行驶速度的影响,得到了实时的路面不平度系数。仿真结果表明,A-E级路面综合估值准确度在97%以上,对路面等级突变的响应时间少于0。15 s,对路面输入的跟随性能良好。采集不同路段不同车速下的实车动力学参数进行辨识,试验结果表明,该工况下估计值准确度为98。2%,与三米尺检测法所得实际路面等级相符,验证了这种车速解耦路面辨识方法的可行性及准确性。
Vehicle speed decoupling road identification method based on least squares
Aiming at the problem that the road recognition method requires a large number of training sets or high computational power support is not conducive to the realization of ride sensation improvement.In this paper,an improved least squares estimation method is proposed,which does not require a training set and directly collects vehicle responses to identify road excitation and road grade changes.On the basis of the variable parameter model of road grade coefficient and vehicle speed,the sampling processing rules of road excitation data are discussed,and the real-time road roughness coefficient is obtained by decoupling the influence of driving speed.The simulation results show that the comprehensive estimation accuracy of the A-E road grade is above 97%,the response time to the sudden change of road surface grade is less than 0.15 s,and the following performance to the road surface input is good.The dynamic parameters of the real vehicle at different speeds of different road sections are collected for identification.The test results show that the accuracy of the estimated value under this working condition is 98.2%,which is consistent with the actual road surface grade obtained by the three-meter-foot detection method.The feasibility and accuracy of this vehicle speed decoupling road identification method are verified.

vehicle engineeringroad surface estimationleast squares methodroad surface roughnessvehicle speed decoupling

刘建泽、柳江、李敏、章新杰

展开 >

青岛理工大学 机械与汽车工程学院,山东 青岛 266520

吉林大学 汽车仿真与控制国家重点实验室,长春 130022

车辆工程 路面估计 最小二乘法 路面不平度 车速解耦

国家自然科学基金项目汽车仿真与控制国家重点实验室开放基金项目山东省自然科学基金项目

5157528820210226ZR2019MEE072

2024

吉林大学学报(工学版)
吉林大学

吉林大学学报(工学版)

CSTPCD北大核心
影响因子:0.792
ISSN:1671-5497
年,卷(期):2024.54(7)
  • 7