吉林大学学报(工学版)2024,Vol.54Issue(7) :2026-2037.DOI:10.13229/j.cnki.jdxbgxb.20221229

一种基于BiGRU和胶囊网络的文本情感分析方法

A text sentiment analysis method based on BiGRU and capsule network

乔百友 武彤 杨璐 蒋有文
吉林大学学报(工学版)2024,Vol.54Issue(7) :2026-2037.DOI:10.13229/j.cnki.jdxbgxb.20221229

一种基于BiGRU和胶囊网络的文本情感分析方法

A text sentiment analysis method based on BiGRU and capsule network

乔百友 1武彤 1杨璐 1蒋有文1
扫码查看

作者信息

  • 1. 东北大学 计算机科学与工程学院,沈阳 110169
  • 折叠

摘要

针对现有基于商品评论文本的情感分析方法大都较少考虑评论文本的方面特征,相关分析模型也未同时考虑上下文长期依赖特征和文本局部特征,因而影响情感分析准确度的问题,提出了一种基于双向门控循环网络(BiGRU)和胶囊网络的文本情感分析方法.该方法首先采用基于词频统计的方法提取出评论文本的方面特征,并将其融入词向量表示中,从而有效提升词向量的表达能力.然后,采用BiGRU提取文本的上下文长期依赖特征,采用胶囊网络提取文本的局部特征,从而实现基于方面的高精度文本情感分析.真实数据集上的实验结果表明,本文提出的方法在准确率、查准率、查全率和F1 分数等评价指标上,均优于双向长短期记忆网络(BiLSTM)、CNN-LSTM、TextCNN等现有情感分析模型.

Abstract

Most of the existing sentiment analysis methods based on commodity comments texts seldom consider the aspect features,and the related analysis models can't consider both the long-term context dependence and the local text features,thus affecting the accuracy of sentiment analysis.To solve the problem,a sentiment analysis method based on bidirectional gated recurrent network(BiGRU)and capsule network is proposed.Firstly,the method uses the approach based on the word frequency statistics to extract the aspect features from the comment texts,and integrate them into the word vector representation to effectively improve the expression ability of the word vector.Then,the BiGRU network is used to extract the long-term context features of the texts,and Capsule Network is used to extract local features of the comment texts,thus realizing high-precision text sentiment analysis based on aspect.The experimental results on real datasets show that the proposed method is superior to bidirectional long-short term memory(BiLSTM),CNN-LSTM,TextCNN and other sentiment classification models in Accuracy,Precision,Recall and F1 score.

关键词

深度学习/方面特征/情感分析/评论文本

Key words

deep learning/aspect features/sentiment analysis/comment text

引用本文复制引用

基金项目

国家重点研发计划项目(2019YFB1405302)

国家自然科学基金项目(61872072)

国家自然科学基金项目(61073063)

出版年

2024
吉林大学学报(工学版)
吉林大学

吉林大学学报(工学版)

CSTPCD北大核心
影响因子:0.792
ISSN:1671-5497
被引量1
参考文献量25
段落导航相关论文