吉林大学学报(工学版)2024,Vol.54Issue(8) :2149-2155.DOI:10.13229/j.cnki.jdxbgxb.20221359

基于主成分回归的进给轴热膨胀误差建模

Thermal expansion error modeling of feed axis based on principal component regression

蒋林 李国龙 王时龙 徐凯 李喆裕
吉林大学学报(工学版)2024,Vol.54Issue(8) :2149-2155.DOI:10.13229/j.cnki.jdxbgxb.20221359

基于主成分回归的进给轴热膨胀误差建模

Thermal expansion error modeling of feed axis based on principal component regression

蒋林 1李国龙 2王时龙 2徐凯 3李喆裕2
扫码查看

作者信息

  • 1. 重庆大学机械与运载工程学院,重庆 400044;重庆机床(集团)有限责任公司,重庆 401300
  • 2. 重庆大学机械与运载工程学院,重庆 400044
  • 3. 重庆理工大学机械工程学院,重庆 400054
  • 折叠

摘要

为进一步提高磨齿机进给轴热误差模型的预测精度,本文提出了基于主成分回归的进给轴热膨胀误差建模方法.通过线性拟合对进给轴定位误差解耦得到热膨胀斜率参数,消除进给轴热膨胀误差的位置相关性,并基于主成分回归算法建立了热膨胀斜率参数与全部测点温度的回归模型.区别于传统方法,主成分回归模型无须进行额外的温度敏感点筛选,分组实验预测结果的均方根误差均值和标准差可达到2.0μm/m、0.9 μm/m,具有更高的精度和稳定性.

Abstract

To further improve the prediction accuracy of the thermal error model of the feed axis of the gear grinding machine,a thermal expansion modeling method of the feed axis based on principal component regression is proposed in this paper.The slope parameter of thermal expansion is obtained by decoupling the positioning error of the feed axis through a linear fitting,which eliminates the position correlation between the thermal expansion error and the position of feed axis.The regression model between the thermal expansion slope and all the temperature points is established using the principal component regression algorithm.Different from the traditional methods,the principal component regression model does not need additional screening of temperature sensitive points,and the mean value and standard deviation of the root means square errors of the prediction results can reach 2.0 μm/m、0.9 μm/m,which has higher accuracy and stability than conventional methods.

关键词

机械工程/进给轴/热膨胀/主成分/斜率参数

Key words

mechanical engineering/feed axis/thermal expansion/principal components/slope parameter

引用本文复制引用

出版年

2024
吉林大学学报(工学版)
吉林大学

吉林大学学报(工学版)

CSTPCD北大核心
影响因子:0.792
ISSN:1671-5497
段落导航相关论文