吉林大学学报(工学版)2024,Vol.54Issue(8) :2214-2222.DOI:10.13229/j.cnki.jdxbgxb.20221386

TrafficPro:一种针对城市信控路网的路段速度预测框架

TrafficPro:a framework to predict link speeds on signalized urban traffic network

温晓岳 钱国敏 孔桦桦 缪月洁 王殿海
吉林大学学报(工学版)2024,Vol.54Issue(8) :2214-2222.DOI:10.13229/j.cnki.jdxbgxb.20221386

TrafficPro:一种针对城市信控路网的路段速度预测框架

TrafficPro:a framework to predict link speeds on signalized urban traffic network

温晓岳 1钱国敏 2孔桦桦 3缪月洁 3王殿海1
扫码查看

作者信息

  • 1. 浙江大学智能交通研究所,杭州 310058
  • 2. 银江技术股份有限公司,杭州 310023;浙江工业大学信息工程学院,杭州 310023
  • 3. 银江技术股份有限公司,杭州 310023
  • 折叠

摘要

针对传统深度学习模型在城市路网速度预测时没有考虑交通流的主动时变特性(信号管控信息),而存在预测精度低的问题,提出了一种基于生成对抗网络与图神经网络的速度预测框架.在该框架中,生成器网络通过主动与被动预测模块同时编码路网交通流与信控信息,生成预测结果,随后使用判别器网络提高预测结果的泛化性.该框架可以获得比传统时间序列模型及深度学习模型更高的预测精度,在真实路网速度预测场景中,可使预测误差相比于最好的基准模型下降3%~5%.

Abstract

When the traditional deep learning-based models predict link speeds for the entire urban traffic network,they do not consider the proactive feature(signal control information)of traffic flow,and therefore achieve low prediction accuracy.In order to tackle this issue,this paper proposed a link speed prediction framework,based on generative adversarial network and graph neural network.By adopting a proactive and a reactive prediction module,the generator of this framework is able to encode traffic flow and signal control information at the entire network level.The discriminator is then used to increase the generalizability of the prediction outcome.By comparing its performance with traditional time-series and deep learning-based models in real-world traffic circumstances,it is found that the proposed framework achieved less prediction error(3%-5%RMSE drop)than the SOTA model(ASTGCN).

关键词

交通运输规划与管理/信控城市路网/交通速度预测/生成对抗网络

Key words

transportation planning and management/signalized urban traffic network/traffic speed prediction/generative adversarial network

引用本文复制引用

出版年

2024
吉林大学学报(工学版)
吉林大学

吉林大学学报(工学版)

CSTPCD北大核心
影响因子:0.792
ISSN:1671-5497
段落导航相关论文