首页|基于时空序列相似性的城轨乘客出行模式识别

基于时空序列相似性的城轨乘客出行模式识别

扫码查看
基于轨道交通智能卡数据,提出一种通过建模个体的时空序列识别出行模式的方法。首先,提取乘客个体访问的所有站点,以站间出行频次、站间距离和站点活动时长计算站点的相似性,利用层次聚类算法划分该个体的主要空间活动区域。其次,基于个体的出行次序推断时空序列,该序列为一组表征时空状态的离散值,依次采用PCA-KL和K-Means++提取相似性序列结构以识别乘客出行模式。最后,以西安某月的轨道交通智能卡数据为例,识别其乘客出行模式。结果表明,复杂的客流具有5种出行模式,其中3种典型模式宏观上属通勤出行,客流占比79%。可见,本文基于个体时空序列相似性的模式识别充分体现了研究方法的特殊性和通用性,针对不同城市操作性强。
Recognition of travel patterns for urban rail transit passengers based on spatiotemporal sequence similarity
Based on smart card data(SCD)of urban rail transit,a method was proposed to identify travel patterns by modeling the spatio-temporal sequences of individuals.Firstly,all stations visited by a passenger individual were extracted,and the similarity of stations was calculated in terms of inter-station travel frequency,inter-station distance,and the station activity duration,thus the main spatial activity areas of this individual were classified using a hierarchical clustering algorithm.Secondly,the spatio-temporal sequence was inferred based on the travel order of the individual,which is a set of discrete values characterizing the spatio-temporal state.PCA-KL and K-Means++were used to extract the similarity sequence structure to identify passenger travel patterns.Finally,using one-month SCD as an example to identify passenger travel patterns for Xi'an rail transit.The results show that the complex passenger flow has five travel patterns,among which three typical travel patterns are macroscopic commuter travel behavior,accounting for 79%of the total passenger flow.Thus,the pattern identified based on the similarity of individuals' travel spatiotemporal sequences fully reflects the particularity and universality of the research method and it is highly operable for different cities.

transportation system engineeringurban rail transitsmart card dataspatiotemporal sequencepassenger travel patterncommuting travel

张娜、陈峰、王剑坡、朱亚迪

展开 >

西安建筑科技大学 资源工程学院,西安 710055

北京交通大学 土木建筑工程学院,北京 100044

长安大学 运输工程学院,西安 710064

交通运输系统工程 城市轨道交通 智能卡数据 时空序列 乘客出行模式 通勤出行

国家自然科学基金项目

52202385

2024

吉林大学学报(工学版)
吉林大学

吉林大学学报(工学版)

CSTPCD北大核心
影响因子:0.792
ISSN:1671-5497
年,卷(期):2024.54(9)