首页|采用神经网络架构搜索的高分辨率遥感影像目标检测

采用神经网络架构搜索的高分辨率遥感影像目标检测

扫码查看
针对传统遥感影像目标检测的深度学习网络需要人工设计、过度依赖专家经验、费力耗时等问题,提出了一种基于神经网络架构搜索的遥感影像目标检测方法,通过逐路径采样和进化搜索策略自动构建高效的目标检测网络,完成遥感影像目标检测任务。在DIOR数据集和RSOD数据集上进行了实验,目标检测平均精度达到67。8%和85。5%,FLOPs为208。47 G和 201。67 G,在检测精度和计算效率方面均优于Faster R-CNN、RetinaNet、NAS-FCOS、ResNet Strikes Back、HRNet和GRoIE等现有网络模型。实验结果表明,本方法能自动搜索出高分辨率遥感影像目标检测的网络架构,具有比人工设计的经典网络更优越的性能。
Object detection of high-resolution remote sensing images by neural architecture search
Aiming at the problems of traditional object detection methods on remote sensing images based on deep learning networks need hand-crafted architectures,which are overly dependent on expert experience and time-consuming,an object detection method for remote sensing images based on neural architecture search is proposed.The network is automatically built by pathwise sampling and evolutionary search strategy for object detection of remote sensing images.Experiments on DIOR dataset and RSOD dataset show that the mean average precision of object detection reached 67.8%and 85.5%,and the FLOPs are 208.47 G and 201.67 G,which are better than the network models such as Faster R-CNN,RetinaNet,NAS-FCOS,ResNet Strikes Back,HRNet and GRoIE in terms of detection accuracy and computational efficiency.The proposed method can automatically search the network architecture for object detection of high-resolution remote sensing images,which is superior to the hand-crafted classical networks.

remote sensinghigh-resolution remote sensing imagenetwork architecture searchobject detectionpathwise sampling

杨军、韩鹏飞

展开 >

兰州交通大学 电子与信息工程学院,兰州 730070

兰州交通大学 测绘与地理信息学院,兰州 730070

遥感 高分辨率遥感影像 神经网络架构搜索 目标检测 逐路径采样

国家自然科学基金项目国家自然科学基金项目兰州市人才创新创业项目

42261067618620392020-RC-22

2024

吉林大学学报(工学版)
吉林大学

吉林大学学报(工学版)

CSTPCD北大核心
影响因子:0.792
ISSN:1671-5497
年,卷(期):2024.54(9)