首页|基于改进YOLOv5s的仓储货物检测算法研究

基于改进YOLOv5s的仓储货物检测算法研究

扫码查看
针对目前仓储货物分类速度慢、易出错、灵活性差等问题,提出了一种改进YOLOv5s的货物检测算法,对仓储货物进行预分类。首先,根据仓储货物的外形特征,将其分为包装箱与包装袋两大类,形成训练数据集;其次,将骨干网络更换为具有更小模型尺寸的MobileNetV3,加快推理;再次,添加SE注意力机制模块,旨在提高模型的检测精度;最后,结合α_CIoU损失函数,增强模型的灵活度。通过实验验证,改进后的算法相较于原始算法在精确率(Precision,P)、平均类别精度(mean Average precision,mAP)和帧率(Frames per second,FPS)三方面分别提升2。1%、0。5%和10。6%,能够高效地完成对仓储货物的预分类工作。
Research on an Improved YOLOv5s-based Algorithm for Warehouse Goods Detection
A modified YOLOv5s detection algorithm had been proposed to address the issues of slow classification speed,error-proneness,and low flexibility in warehouse goods categorization.The algorithm aims to pre-classify warehouse goods.Firstly,based on the external characteristics of warehouse goods,they were divided into two main categories:packaging boxes and packaging bags,forming a training dataset.Secondly,the backbone network was replaced with MobileNetV3,a smaller-sized model,to accelerate inference.Additionally,an SE attention mechanism module was added to enhance the detection accuracy of the model.Finally,the α_CIoU loss function was incorporated to improve the flexibility of the model.Experimental results demonstrated that the improved algorithm achieves a 2.1%increase in precision(P),a 0.5%increase in mean Average Precision(mAP),and a 10.6%increase in Frames Per Second(FPS)compared to the original algorithm.It enables efficient pre-classification of warehouse goods.

YOLOv5swarehouse goodsdetection algorithmpre-classification

王影、王晨、贾永涛、刘麒

展开 >

吉林化工学院信息与控制工程学院,吉林吉林 132022

中国石油吉林石化公司化肥厂,吉林吉林 132000

YOLOv5s 仓储货物 检测算法 预分类

吉林市科技成果项目吉林市科技成果项目吉林化工学院科学研究项目吉林化工学院重大科技项目吉林化工学院重大科技项目

20175024420190502118201806420160332018017

2024

吉林化工学院学报
吉林化工学院

吉林化工学院学报

影响因子:0.351
ISSN:1007-2853
年,卷(期):2024.41(1)