首页|多策略融合改进的麻雀搜索算法

多策略融合改进的麻雀搜索算法

扫码查看
针对麻雀搜索算法(SSA)收敛速度慢、探索能力不足、容易陷入局部最优等问题,提出了一种多策略融合改进的麻雀搜索算法(OSSSA)。首先,借助Tent混沌映射初始化种群的多样性以提升初始解的质量;其次,在发现者位置更新中引入鱼鹰算法第一阶段探索策略提升种群对局部搜索的勘探能力;最后,在跟随者位置更新中引入柯西变异和可变螺旋搜索策略提高算法的搜索效率和全局搜索性能,降低算法陷入局部最优解的概率,增强算法的全局寻优能力。在此基础上,对 8 个基准测试函数进行仿真实验以评估算法的寻优性能,通过对仿真图像及数据的分析,改进后的麻雀搜索算法在收敛速度和寻优精度上得到了较大的提升,验证了改进策略的有效性。
Improved Sparrow Search Algorithm based on Multi-strategy Fusion
Aiming at the problems of slow convergence speed,insufficient exploration ability and easy to fall into local optimum of sparrow search algorithm(SSA),an improved sparrow search algorithm(OSSSA)based on multi-strategy fusion was proposed.Firstly,the diversity of population was initialized with the help of Tent chaotic map to improve the quality of initial solution.Secondly,the first stage exploration strategy of osprey algorithm was introduced in the location update of discoverer to improve the exploration ability of population to local search.Finally,cauchy mutation and variable spiral search strategy were introduced to update the follower position to improve the search efficiency and global search performance of the algorithm,reduce the probability of the algorithm falling into the local optimal solution and enhance the global optimization ability of the algorithm.On this basis,eight benchmark functions were simulated to evaluate the optimization performance of the algorithm.Through the analysis of simulated images and data,the improved sparrow search algorithm had greatly improved the convergence speed and optimization accuracy,which verifies the effectiveness of the improved strategy.

sparrow search algorithmcauchy variationosprey algorithmspiral search strategy

王荣林、王海波、李志峰、李鹏涛、文皓、刘春杰

展开 >

吉林化工学院 机电工程学院,吉林 吉林 132022

吉林化工学院 信息与控制工程学院,吉林 吉林 132022

麻雀搜索算法 柯西变异 鱼鹰算法 螺旋搜索策略

2024

吉林化工学院学报
吉林化工学院

吉林化工学院学报

影响因子:0.351
ISSN:1007-2853
年,卷(期):2024.41(3)