首页|融合正余弦策略的变异蝴蝶算法

融合正余弦策略的变异蝴蝶算法

扫码查看
为了解决基本蝴蝶优化算法求解精度低、容易陷入局部最优和收敛速度慢等问题,提出了一种结合正余弦策略的变异蝴蝶算法。首先,使用Bernoulli混沌映射对种群进行初始化,使得种群的分布更加均匀;接着,引入了自适应权重系数,以提高全局和局部位置更新的速度和精度;随后,在局部位置搜索阶段,引入了正余弦算法,并利用动态切换概率来控制使用正余弦算法,从而增强了算法的局部搜索能力;最后,引入了高斯变异策略,对最优解进行变异,以增强算法跳出局部最优解的能力。通过对八个基准测试函数的仿真实验,实验结果表明,改进后的算法与其他算法相比具有明显的竞争力,效果更佳。
A Variational Butterfly Algorithm Incorporating the Sine-Cosine Strategy
To address the issues of lowPrecision,susceptibility to local optima,and slow convergence speed in the basic Butterfly Optimization Algorithm(BOA),this paper proposed a variant butterfly algorithm incorporating a sine-cosine strategy.First,the population was initialized using a Bernoulli chaotic map,resulting in a more uniform distribution.Next,adaptive weight coefficients were introduced to improve the speed and precision of global and local position updates.Then,in the local position search phase,the Sine-Cosine Algorithm(SC A)was integrated,with a dynamic switching probability to control the use of SC A,thereby enhancing the algorithm's local search capability.Finally,a Gaussian mutation strategy was employed to mutate the optimal solution,enhancing the algorithm's ability to escape local optima.Simulation experiments on eight benchmark test functions demonstrate that the improved algorithm showed significant competitiveness and better performance compared to other algorithms.

BOASC ABernoulli mappinggaussian mutation

李鹏涛、王海波、李志峰、王荣林、文皓、刘春杰

展开 >

吉林化工学院信息与控制工程学院,吉林吉林 132022

吉林化工学院机电工程学院,吉林吉林 132022

蝴蝶优化算法 正余弦算法 Bernoulli映射 高斯变异

2024

吉林化工学院学报
吉林化工学院

吉林化工学院学报

影响因子:0.351
ISSN:1007-2853
年,卷(期):2024.41(5)