吉林化工学院学报2024,Vol.41Issue(5) :50-53.DOI:10.16039/j.cnki.cn22-1249.2024.05.009

基于改进的Faster R-CNN算法建筑领域裂缝检测研究

Crack Detection in Construction Field based on Improved Faster R-CNN Algorithm

李双远 刘向阳
吉林化工学院学报2024,Vol.41Issue(5) :50-53.DOI:10.16039/j.cnki.cn22-1249.2024.05.009

基于改进的Faster R-CNN算法建筑领域裂缝检测研究

Crack Detection in Construction Field based on Improved Faster R-CNN Algorithm

李双远 1刘向阳2
扫码查看

作者信息

  • 1. 吉林化工学院信息中心,吉林吉林 132022
  • 2. 吉林化工学院信息与控制工程学院,吉林吉林 132022
  • 折叠

摘要

在人工智能技术的驱动下,国家建筑设施智能化也在迅猛发展,墙体裂缝的检测问题也受到人们越来越多的关注.针对传统人工对建筑墙体裂缝检测精度低的问题,提出一种改进的Faster R-CNN算法进行墙面裂缝检测.首先,自制实验数据集并进行数据增强,之后使用ResNet50残差网络来替代VGG16网络模块进行特征提取,接着加入FPN特征金字塔模块,提高模型多尺度检测能力,最后使用EIoU损失函数提高模型检测精度.通过实验表明,改进后的算法检测能力大大提升,mAP值达到93.5%,能够满足高精度检测的需求.

Abstract

Driven by artificial intelligence technology,the intelligentization of national building facilities is also developing rapidly,and the problem of wall crack detection is also receiving more and more attention.Aiming at the problem of low accuracy of traditional manual detection of building wall cracks,this paper proposes an improved Faster R-CNN algorithm for wall crack detection.Firstly,the experimental dataset was made and enhanced,then the ResNet50 residual network was used to replace the VGG16 network module for feature extraction,then the FPN feature pyramid module was added to improve the multi-scale detection ability of the model,and finally,the EIoU loss function was used to improve the accuracy of the model detection.The experiments showed that the improved algorithm in this paper has greatly improved the detection ability,and the mAP value reaches 93.5%,which can meet the demand of high-precision detection.

关键词

Faster/R-CNN/FPN/目标检测/墙体裂缝/EIoU

Key words

Faster R-CNN/FPN/object detection/wall crack/EIoU

引用本文复制引用

出版年

2024
吉林化工学院学报
吉林化工学院

吉林化工学院学报

影响因子:0.351
ISSN:1007-2853
段落导航相关论文