首页|基于RBF神经网络模型的田径运动员焦虑、压力来源分析

基于RBF神经网络模型的田径运动员焦虑、压力来源分析

扫码查看
为了提高运动员的竞技表现,需准确获取运动员的焦虑情况并调节其心理状态。利用分层聚类算法来识别田径运动员压力来源,并构建基于RBF模型的运动员焦虑状态分析模型,通过隐含单元中心、函数宽度和连接权重记录各种运动焦虑状态的特征。测试结果显示,所提出模型的准确性和效率很高,可以准确分类和识别不同的焦虑状态,为田径运动员的压力缓解决策提供了有力依据。
Analysis of Anxiety and Stress Sources of Track and Field Athletes Based on Neural Networks
To enhance athletes'competitive performance,it is essential to accurately gauge their anxiety levels and adjust their mental state accordingly.A hierarchical clustering algorithm has been employed to pinpoint sources of stress among track and field athletes,and an athlete anxiety analysis model based on the RBF(Radial Basis Function)model has been developed.This model captures the characteristics of various anxiety states through hidden unit centers,function widths,and connection weights.Testing has demonstrated that this model is both highly accurate and efficient,enabling precise classification and identification of different anxiety states.This provides a robust foundation for making informed decisions on managing the stress experienced by track and field athletes.

analytic hierarchy processstressanxietytrack and field athletes

于智晨、杨光

展开 >

东北电力大学 体育学院,吉林省 吉林市 132000

层次分析法 压力 焦虑 田径运动员

吉林省哲学社会科学智库基金项目

2023JLSKZKZB099

2024

吉林体育学院学报
吉林体育学院

吉林体育学院学报

影响因子:0.428
ISSN:1672-1365
年,卷(期):2024.40(4)
  • 6