首页|基于GA-BLS方法的手势识别研究

基于GA-BLS方法的手势识别研究

Research on Gesture Recognition Based on GA-BLS

扫码查看
为进一步提升人机交互领域中手势识别的精度和速度,探究肌肉疲劳对手势识别的影响规律,提出了改进的GA-BLS方法,利用遗传算法(genetic algorithms,GA)优化宽度学习(broad learning system,BLS)模型参数,并使用弹性网络回归改进传统的BLS模型.利用所提模型对8种手势下的A型超声信号和肌电信号进行手势识别分析,并与SVM、KNN、RF、LDA等方法进行对比,以验证所研究方法的有效性;将长时间段下的A型超声信号和肌电信号切分成4个数据段,发现随着肌肉疲劳程度的增加,手势识别的准确率均呈现出明显下降的趋势,而且A型超声信号相较于肌电信号具有更好的抗疲劳特性.
To further improve the accuracy and speed of gesture recognition in the field of human-computer interaction,and explore the influence of muscle fatigue on gesture recognition,an improved GA-BLS method was proposed,genetic algorithms(GA)were used to optimize the parameters of the broad learning system(BLS)model,and elastic network regression was used to improve the traditional BLS model.The proposed model was used to analyze the A-mode ultrasound signal and EMG signal under eight kinds of gestures for gesture recognition,and compared with SVM,KNN,RF,LDA and other methods to verify the effectiveness of the research methods.Furthermore,the A-mode ultrasound and EMG in a long period of time were divided into four data segments.It was found that with the increase of muscle fatigue,the accuracy of gesture recognition showed a significant downward trend,and A-mode ultrasound signal had better fatigue resistance than EMG signal.

gesture recognitionphysiological signalsgenetic algorithmsbroad learning systemmuscle fatigueelastic network regression

杜义浩、曹添福、范强、王孝冉

展开 >

燕山大学电气工程学院河北省测试计量技术及仪器重点实验室河北省智能康复及神经调控重点实验室,河北秦皇岛 066004

手势识别 生理信号 遗传算法 宽度学习 肌肉疲劳 弹性网络回归

河北省自然科学基金河北省创新能力提升计划项目

C202020301222567619H

2024

计量学报
中国计量测试学会

计量学报

CSTPCD北大核心
影响因子:0.303
ISSN:1000-1158
年,卷(期):2024.45(1)
  • 1