首页|基于脑电图的帕金森轻度认知障碍功能网络特征分析

基于脑电图的帕金森轻度认知障碍功能网络特征分析

Functional Network Characterization Analysis of Parkinson's Mild Cognitive Impairment Based on EEG

扫码查看
帕金森氏轻度认知障碍(PDMCI)是帕金森氏症患者痴呆的先兆,这对使用神经评分量表和医生经验等传统方法进行准确诊断提出了挑战.利用26名PDMCI患者和23名正常人的脑电信号,基于定向传递函数构建了Delta、Theta、Alpha、Beta和Gamma频段的脑功能网络.引入了一种新颖的图论特征——效率密度来捕获网络密度和传输效率.研究结果揭示了独特的连接模式,Delta和Theta波段的连接更紧密,而Alpha、Beta和Gamma波段的连接更稀疏.帕金森病(PD)患者与对照组之间的Theta、Alpha、Beta和Gamma频带存在显著差异(p<0.05).因此,脑功能网络可以有效反映PD脑功能异常状态,效率密度特征可以反映PD脑功能异常活动的特征量.
Parkinson's mild cognitive impairment(PDMCI)is a precursor to dementia in Parkinson's patients,posing challenges for accurate diagnosis using conventional methods such as neurological rating scales and doctors'experience.By using the EEG signals of 26 PDMCI patients and 23 normal subjects,the brain function networks of Delta,Theta,Alpha,Beta and Gamma bands were constructed based on the directional transfer function.A novel graph theory feature,efficiency density,is introduced to capture both network density and transmission efficiency.The findings reveal distinctive connectivity patterns,with tighter connections in Delta and Theta bands and sparser connections in Alpha,Beta,and Gamma bands.Significant differences between PD patients and the control group are observed in Theta,Alpha,Beta,and Gamma bands(p<0.05).Therefore,the brain function network can effectively reflect the abnormal brain function status of PD,and the efficiency density characteristic can reflect the characteristic amount of abnormal brain activity in PD.

intelligent information processingParkinson's mild cognitive impairmentEEGbrain function networkfeature extractionefficiency density

李昕、张晴、张莹、谢平、尹立勇

展开 >

燕山大学电气工程学院,河北秦皇岛 066004

河北省测试计量技术及仪器重点实验室,河北秦皇岛 066004

燕山大学康养产业技术研究院,河北秦皇岛 066004

秦皇岛市第一医院,河北秦皇岛 066004

展开 >

智能信息处理 帕金森轻度认知障碍 脑电 脑功能网络 特征提取 效率密度

国家自然科学基金河北省自然科学基金河北省自然科学基金燕山大学与秦皇岛市第一医院医工交叉特色专项河北省科技计划项目

62076216F2019203515F2022203005UY202201236Z2004G

2024

计量学报
中国计量测试学会

计量学报

CSTPCD北大核心
影响因子:0.303
ISSN:1000-1158
年,卷(期):2024.45(1)
  • 7