首页|改进的轻量级行人目标检测算法

改进的轻量级行人目标检测算法

Improved Lightweight Pedestrian Target Detection Algorithm

扫码查看
针对行人目标数量密集、目标尺度小和目标周围背景光照强弱不一而导致的检测精度低的问题,提出一种基于特征融合的轻量化行人检测算法.以TinyYOLOv4为基础框架,首先,搭建新的主干特征提取网络(CSPDarknet53-S),在原主干网络的基础上加入新的特征提取模块(REM)来增强网络提取行人特征的能力.其次,改进特征融合结构,在主干网络提取高低层特征图后,先是在主干网络与特征融合网络间加入特征融合模块(RM-block)来增大感受野;然后引入浅层特征信息保留更多小目标特征,形成新的特征融合网络(IFFM).最后,通过YOLO Head对融合来的特征图进行处理获得输出结果.实验结果表明,提出的算法在行人数据集(PASCAL VOC2007和VOC2012的person数据)上取得了较高的检测精度以及较好的检测效果.
A lightweight pedestrian detection algorithm based on feature fusion is proposed to solve the problem of low detection accuracy caused by dense pedestrian targets,small target scales,and varying background illumination around the target.Firstly,build a new backbone feature extraction network(CSPDarknet53-S),and add a new feature extraction module(REM)to the original backbone network to enhance the network's ability to extract pedestrian features.Secondly,improve the feature fusion structure.After extracting high-low feature maps from the backbone network,add a feature fusion module(RM block)between the backbone network and the feature fusion network to increase the receptive field.And then introduce shallow feature information to retain more small target features to form a new feature fusion network(IFFM).Finally,the fused feature map is processed through YOLO Head to obtain the output results.The above steps are based on the basic framework of TinyYOLOv4.Experimental results show that the proposed algorithm achieves higher detection accuracy and better detection results on pedestrian data sets(PASCAL VOC2007 and VOC2012 person data).

target detectionfeature fusionshallow characteristicsTinyYOLOv4 algorithmattention mechanism

金梅、任婷婷、张立国、闫梦萧、沈明浩

展开 >

燕山大学电气工程学院,河北秦皇岛 066004

目标检测 特征融合 浅层特征 TinyYOLOv4算法 注意力机制

国家重点研发项目子课题河北省科学技术研究与发展计划科技支撑计划项目

2020YFB171100120310302D

2024

计量学报
中国计量测试学会

计量学报

CSTPCD北大核心
影响因子:0.303
ISSN:1000-1158
年,卷(期):2024.45(2)
  • 23