首页|基于非凸熵最小化与高斯混合模型聚类的电容层析成像图像重建

基于非凸熵最小化与高斯混合模型聚类的电容层析成像图像重建

Image Reconstruction of Electrical Capacitance Tomography Based on Nonconvex Entropy Minimization and Gaussian Mixture Model Clustering

扫码查看
基于压缩感知原理提出了一种构建非凸熵(NE)函数作为正则化项的方法,在有效缓解电容层析成像(ECT)病态性逆问题的同时可保证解的稀疏性,并采用快速迭代阈值收缩算法(FISTA)求解以加快收敛速度.对所得解通过高斯混合模型(GMM)进行阈值寻优,采用期望最大化算法(E-M)更新模型参数,从而构建NE-GMM算法.仿真及实验结果均表明:与LBP、Landweber、迭代硬阈值(IHT)、ADMM-L1及NE算法进行了对比,该算法所得重建图像质量最优,对中心分布及多物体分布的保真度进一步提高,仿真实验重建图像的平均相对误差和相关系数分别为0.4611及0.8827,优于其他5种算法.
Based on the principle of compressed sensing,a method of constructing nonconvex entropy(NE)function as regularization term is proposed,which can effectively alleviate the inverse problem of electrical capacitance tomography(ECT)ill-condition and ensure the sparseness of the solution.Fast iterative threshold contraction algorithm(FISTA)is used to accelerate the convergence rate.The obtained solution is optimized by Gaussian mixture model(GMM),and the model parameters are updated by expectation maximization algorithm(E-M).After that,NE-GMM algorithm is obtained.Both simulation and experimental results show that reconstructed images with the best quality can be obtained using NE-GMM algorithm compared with LBP,Landweber,iterative hard threshold(IHT),ADMM-L1 and NE algorithms,especially the fidelity of center distribution and multi-object distribution is further improved.The average relative error and correlation coefficient of the simulated reconstructed image obtained by this method are respectively 0.4611 and 0.8827,which are superior to the other five methods.

image reconstructionelectrical capacitance tomographynonconvex entropyGaussian mixture model

张立峰、卢栋臣、刘卫亮

展开 >

华北电力大学 自动化系,河北保定 071003

图像重建 电容层析成像 非凸熵 高斯混合模型

国家自然科学基金

61973115

2024

计量学报
中国计量测试学会

计量学报

CSTPCD北大核心
影响因子:0.303
ISSN:1000-1158
年,卷(期):2024.45(2)
  • 20