首页|一种改进的YOLOv5s航拍车辆检测算法

一种改进的YOLOv5s航拍车辆检测算法

A Vehicle Detection Algorithm Based on Improved YOLOv5s from the Aerial Perspective

扫码查看
为了解决航拍图像中车辆小目标检测困难的问题,提出一种改进的YOLOv5s航拍车辆检测算法.首先,将未利用的浅层特征信息与其他深层特征信息进一步融合,组成用于小目标检测的新检测层,提高小目标的检测能力;其次,结合SPD模块重新设计CSP模块构成SPD-CSP模块,代替原有网络的下采样操作,减少特征提取时小目标有效信息的损失;最后,将通道注意力机制ECA模块引入到Backbone部分中,通过自适应地调整不同特征通道的权重系数,使得网络更加关注特征图中的关键信息,减少无关信息的干扰.实验结果表明:提出的算法在VisDrone数据集上,与YOLOv5s网络相比,均值平均精度PmAP 0.5提高了6.4%,检测速度FPS达到65 帧/s,能实时、精确地对航拍车辆进行检测.
To solve the problem of small vehicle target detection in aerial images,a vehicle detection algorithm based on improved YOLOv5s from the aerial perspective is proposed.The unused shallow feature information is further fused with other deep feature information to compose a new detection layer for small target detection to enhance the detection capability of small targets.The CSP module is combined with the space-to-depth(SPD)module to form the SPD-CSP module,which replaces the downsampling operation of the original network and reduces the loss of practical information of small targets during feature extraction.Furthermore,the efficient channel attention(ECA)module,a channel attention mechanism,is introduced into the Backbone part.To do so,the network will pay more attention to the vital information in the feature graph and reduce the interference of irrelevant information by adaptively adjusting the weight coefficients of different feature channels.The experimental results show that the proposed algorithm improves the mean average precision PmAP0.5by 6.4%on the VisDrone dataset compared to the YOLOv5s network,and the detection speed FPS reaches 65 frames per second,which enables real-time and accurate detection of aerial vehicles.

machine visionYOLOv5sSPD-CSP moduleaerial imagedeep learningefficient channel attention mechanism

张立国、沈明浩、金梅、任婷婷、赵嘉士

展开 >

燕山大学 电气工程学院,河北 秦皇岛 066004

机器视觉 YOLOv5s SPD-CSP模块 航拍图像 深度学习 高效通道注意力机制

国家重点研发计划河北省科学技术研究与发展计划科技支撑计划

2020YFB171100120310302D

2024

计量学报
中国计量测试学会

计量学报

CSTPCD北大核心
影响因子:0.303
ISSN:1000-1158
年,卷(期):2024.45(7)
  • 2