首页|基于偏振成像和YOLOv8的雾天道路目标检测

基于偏振成像和YOLOv8的雾天道路目标检测

Road Object Detection in Foggy Weather Based on Polarization Imaging and YOLOv8

扫码查看
雾天天气下,车辆和行人目标的准确检测对汽车自动驾驶非常重要.首先通过偏振成像装置采集了0°、45°、90°和135°角度的偏振图像,并通过3 种不同的融合方式构建了I04590、stokes和pauli图像数据集.提出一种改进YOLOv8 的目标检测算法以提高雾天偏振图像中汽车和行人两类目标的检测准确率.提出一种基于混合池化的MixSPPF结构,改善了原有SPPF结构对全局信息的提取能力;然后基于不同大小的卷积设计了Multi-scale Module模块并结合Coordinate Attention注意力机制增强了对空间信息和通道信息的提取.实验结果表明,提出的改进YOLOv8 算法获得的全类平均准确率PA@0.5 和PA@0.5:0.95 分别达到了 83.4%和 39.3%,比初始YOLOv8 算法分别提升了1.6%和0.9%.
Accurate detection of vehicle and pedestrian targets is crucial for autonomous driving in foggy weather.Polarized images at 0°,45°,90°,and 135° were first acquired by a polarization imaging device,then I04590,stokes,and pauli image datasets were constructed through three different fusion methods.An improved YOLOv8 object detection algorithm was proposed to improve the detection accuracy of two types of targets,automobiles and pedestrians,in polarized images in foggy weathers.A MixSPPF structure based on hybrid pooling was proposed to improve the original SPPF structure's ability to extract global information.Then a Multi-scale Module was designed based on convolutions of different sizes and combined with the Coordinate Attention mechanism to enhance the extraction of spatial and channel information.The experimental results showed that the proposed improved YOLOv8 algorithm achieved the mean average precision(mAP)is mAP@0.5 value of 83.4%and mAP@0.5:0.95 value of 39.3%,which were improved by 1.6%and 0.9%respectively compared to the original YOLOv8 algorithm.

target detectionpolarization image fusionfoggy weatherYOLOv8MixSPPFMulti-scale Module

谈爱玲、李晓航、赵勇、高美静、苏海杰、刘闯、郭天安

展开 >

燕山大学 信息科学与工程学院 河北省特种光纤与光纤传感重点实验室,河北 秦皇岛 066004

燕山大学 电气工程学院 河北省测试计量技术及仪器重点实验室,河北 秦皇岛 066004

北京理工大学 集成电路与电子学院,北京 100081

目标检测 偏振图像融合 雾天天气 YOLOv8 MixSPPF Multi-scale Module

2024

计量学报
中国计量测试学会

计量学报

CSTPCD北大核心
影响因子:0.303
ISSN:1000-1158
年,卷(期):2024.45(11)