首页|基于改进YOLOv5的带钢表面缺陷检测

基于改进YOLOv5的带钢表面缺陷检测

Strip Surface Defect Detection Based on Improved YOLOv5

扫码查看
针对带钢表面缺陷检测方法存在检测精度低和检测速度慢的问题,提出一种基于改进YOLOv5 的带钢表面缺陷检测方法.首先,采用内容感知特征重组CARAFE作为多尺度特征融合的上采样算子,构建具有通道缩放的自适应空间特征融合CS-ASFF结构,以增强多尺度特征融合并控制模型复杂度.其次,在模型的卷积层和跨层级结构引入GSConv和VoVGSCSP模块,以减小计算量并提高检测精度.最后,采用Focal-GIOU Loss作为损失函数来解决带钢缺陷图像中难易样本不平衡的问题,并提升模型对复杂数据的适应能力.实验结果表明,在NEU-DET数据集上该方法达到了80.6%的均值平均精度(PmAP),计算量为14.8 GFLOPs.与YOLOv5 相比,PmAP提高了4.3%且计算量减少了6.33%.与当前主流目标检测网络相比,在更低的计算量下该方法具有最高的检测精度,能够满足真实工业场景下的带钢表面缺陷实时检测.
Aiming at the problems of low detection accuracy and slow detection speed in strip surface defect detection methods,a strip surface defect detection method based on improved YOLOv5 is proposed.Firstly,the Content-Aware ReAssembly of FEatures(CARAFE)is used as the upsampling operator of multi-scale feature fusion,and the Channel Scaling-Adaptively Spatial Feature Fusion(CS-ASFF)is constructed to enhance multi-scale feature fusion and control model complexity.Secondly,the GSConv and VoVGSCSP modules are introduced into the convolutional layer and cross-layer structure of the model to reduce computation and improve detection accuracy.Finally,the Focal-GIOU Loss is used as the loss function to solve the problem of imbalance between difficult and easy samples in strip defect images,thereby improving the adaptability to complex data.Experimental results show that the method achieves 80.6%mean average precision(PmAP)on NEU-DET dataset,with a calculation amount of 14.8 GFLOPs.Compared with YOLOv5,PmAP is increased by 4.3%and the computation amount is reduced by 6.33%.Compared with the current mainstream object detection networks,this method has the highest detection accuracy with a lower calculation amount and can meet the real-time detection of surface defects on steel strips in real industrial scenarios.

machine visionstrip surface defects detectionYOLOv5multi-scale fusionloss function

杨威、杨俊、许聪源

展开 >

浙江理工大学 计算机科学与技术学院,浙江 杭州 310018

嘉兴大学 信息科学与工程学院,浙江 嘉兴 314001

机器视觉 带钢表面缺陷检测 YOLOv5 多尺度融合 损失函数

2024

计量学报
中国计量测试学会

计量学报

CSTPCD北大核心
影响因子:0.303
ISSN:1000-1158
年,卷(期):2024.45(11)