首页|基于L1+p范数的ECT正则化图像重建算法研究

基于L1+p范数的ECT正则化图像重建算法研究

Research on L1+p-norm Based Regularization Algorithm for ECT Image Reconstruction

扫码查看
针对基于正则化方法优化电容层析成像过程中,L1范数过度忽略图像特征,L2范数过于平滑,导致成像质量不佳的问题,提出了一种基于 L1+p范数的 ECT 正则化图像重建方法.利用 L1+p(0<p<1)范数作为损失函数的正则化项,通过调节参数p的值,使得ECT图像重建同时兼具稀疏性和光滑性.仿真结果表明,在复杂多泡流模型的成像中引入L1+p范数的改进正则化算法后,相关系数相较LBP算法平均提升了77.04%;相较Tikhonov正则化算法平均提升了36.18%,相较L1 正则化平均提升了41%.气固两相流实验表明,算法能够有效提升成像质量,且能够实时调节成像稀疏性.
The regularization method is commonly used for image optimization in ECT.The L1 norm is overly neglecting the image features and the L2 norm is too smooth,which leads to poor imaging quality,an ECT regularization image reconstruction method based on the L1+p norms is proposed.Using the L1+p(0<p<1)paradigm as the regularization term of the loss function,the ECT image reconstruction is made both sparse and smooth by adjusting the value of the parameter p.The simulation experiment's results showed that the correlation coefficient of the improved regularization algorithm with norm is on average improved by 77.04%compared with the LBP algorithm,by 36.18%compared with Tikhonov regularization algorithm and by 41%compared L1-norm regularization algorithm in complex multi-bubble flow imaging.Gassolid two-phase flow experiments showed that the proposed algorithm can effectively improve the imaging quality,and is capable of real time adjusting image sparsity.

multiphase flow measurementECTregularizationimage reconstructionL1+p-norm

马敏、林琮皓

展开 >

中国民航大学 电子信息与自动化学院,天津 300300

多相流测量 电容层析成像 正则化 图像重建 L1+p范数

2024

计量学报
中国计量测试学会

计量学报

CSTPCD北大核心
影响因子:0.303
ISSN:1000-1158
年,卷(期):2024.45(12)