首页|多变气热参数下大尺度槽深叶顶的流动换热特性

多变气热参数下大尺度槽深叶顶的流动换热特性

扫码查看
为了研究具有渐缩型面凹槽在不同深度下叶顶间隙的流动换热特性,针对某一级高压涡轮,在发动机五种典型工况下通过改变其凹槽深度,采用k-ω湍流模型以及自适应湍流模拟方法(SATES)分别进行定常和非定常的数值仿真分析.研究结果表明,凹槽深度是影响间隙泄漏流动和叶顶换热特性的重要因素,同时该影响趋势也受涡轮工作状态的限制.相比于深凹槽,浅凹槽方案的间隙泄漏量明显降低,对应的涡轮动叶出口总压损失系数也有所降低,这在涡轮小流量状态时尤为明显.然而,深凹槽设计在降低叶顶热负荷方面表现更好,其中槽深0.8H方案比槽深0.1H方案的叶顶平均努塞尔数降低38.3%~95.3%.定常和非定常两种计算方法主要影响了间隙内局部泄漏量和叶顶前部热负荷的预测值,并未改变流动换热特性的分布趋势.
Flow and Heat Transfer Characteristics of Large-scale Grooved Deep Blade Tip under Variable Working Conditions
In order to study the flow and heat transfer characteristics of the tip clearance with tapered sur-face grooves at different depths,for a high pressure turbine,by changing the groove depth under five typ-ical working conditions of the engine,the k-ω turbulence model and the adaptive turbulence simulation method(SATES)are used to carry out steady and unsteady numerical simulation analysis respectively.The results show that the groove depth is an important factor affecting the tip leakage flow and heat trans-fer characteristics,and the influence trend is also limited by the working conditions of the turbine.Com-pared with the deep groove,the clearance leakage of the shallow groove scheme is significantly reduced,and the corresponding total pressure loss coefficient of the turbine blade outlet is also reduced,which is particularly obvious in the low flow mass working conditions.However,the deep groove design performs better in reducing the thermal load of the blade tip.The average Nusselt number of the blade tip of the groove depth 0.8H scheme is 38.3%-95.3%lower than that of the groove depth 0.1H scheme.The steady and unsteady calculation methods mainly affect the predicted values of the local leakage in the gap and the heat load in the front of the blade tip,and do not change the distribution trend of flow and heat transfer characteristics.

turbine blade tipshrinkage surface grooveslarge scale groovegap flowblade tip heat transfer

王龙飞、张德伟、叶大海、常艳、毛军逵、韩省思

展开 >

南京航空航天大学能源与动力学院,江苏 南京 210016

中国航发湖南动力机械研究所,湖南 株洲 412002

涡轮叶顶 渐缩型面凹槽 大尺度凹槽 间隙流动 叶顶换热

国家两机重点专项中国博士后科学基金江苏省自然科学基金

2017-Ⅲ-0010-00362020TQ0147BK20200454

2024

节能技术
国防科技工业节能技术服务中心

节能技术

CSTPCD
影响因子:0.601
ISSN:1002-6339
年,卷(期):2024.42(1)
  • 24