首页|基于SCADA系统和神经网络的海上风电场故障预警方法研究

基于SCADA系统和神经网络的海上风电场故障预警方法研究

扫码查看
针对海上风电场的快速发展,风电场故障预警得到了广泛的关注,精准、及时的对海上风电场的风电机组运行进行监测,实现故障精确预警是目前研究的热点问题.本研究将SCADA系统和GA-BP神经网络相结合建立了发电机绕组温度预测模型,并耦合灰色关联度分析法来筛选神经网络模型的输入层数据,确定模型的敏感性指标,基于统计学原理结合风电场评价指标和滑动窗口,计算海上风电场运行预警阈值,根据预警阈值与机组的评价指标确定风电场机组的运行状态,提出一种海上风电场故障预警方法,研究结果表明该模型能有效实现海上风电场故障预警,为海上风电场故障预警方法提供理论依据和技术支撑.
Fault Warning Method for Offshore Wind Farm based on SCADA System and Neural Network
In response to the rapid development of offshore wind farms,wind farm fault early warning has received widespread attention,accurate and timely monitoring of the operation of wind turbines in offshore wind farms,and the realization of accurate fault early warning is a hot issue in current research.In this study,a generator winding temperature prediction model is established by combining SCADA system and GA-BP neural network,and coupled with gray correlation analysis to screen the input layer data of the neural network model and determine the sensitivity index of the model.Based on the principle of statistics combined with the wind farm evaluation index and sliding window,the offshore wind farm operation warn-ing threshold is calculated.Finally,according to the warning threshold and the evaluation index of the u-nit to determine the operational status of the wind farm unit,put forward an offshore wind farm fault early warning method.The research results show that the model can effectively realize the offshore wind farm fault early warning and provide theoretical basis and technical support for the offshore wind farm fault ear-ly warning method.

SCADA systemGA-BPNNwind farmsfault detection

张晓宇、张帅、姚季秋、肖泽鑫、董俊芳

展开 >

国华(江苏)风电有限公司,江苏 东台 224200

国家能源集团东台海上风电有限责任公司,江苏 东台 224200

金风科技股份有限公司,北京 100167

SCADA系统 GA-BPNN 风电场 故障预警

2024

节能技术
国防科技工业节能技术服务中心

节能技术

CSTPCD
影响因子:0.601
ISSN:1002-6339
年,卷(期):2024.42(1)
  • 22