首页|基于改进量子粒子群算法的叶片延长翼型厚度优化设计

基于改进量子粒子群算法的叶片延长翼型厚度优化设计

扫码查看
针对如何平衡载荷与升阻比以优化翼型厚度的问题,采用一种改进量子粒子群算法(IQPSO)对翼型厚度进行计算优化,以国产某 2MW风机为例,通过对延长前后的叶尖速比、风能利用率、叶根载荷、升阻比、功率以及发电量等试验数据对比分析来验证所采用的方法.验证结果显示,叶片延长后,优化翼型厚度为15%.同时,在升阻比平均提高约3.156%的基础上,叶根增加载荷水平在Mx、My、Mz方向上最多分别提高了 12.3%、12.7%、12.5%,且均在安全范围 13%内,发电量相较于历史水平提升34.71%.从而表明通过采用IQPOS进行叶片翼型厚度优化后,在满足叶片承受载荷的前提下,能够显著提高升阻比,可实现风力发电机的性能提升,达到稳定提高发电量的目的.
Optimized Design of Blade Extended Airfoil Thickness based on Improved Quantum Particle Swarm Algorithm
Aiming at the problem of how to balance the load and lift-resistance ratio in order to optimize the airfoil thickness,an improved quantum particle swarm algorithm(IQPSO)is presented to calculate and optimize the airfoil thickness.Take a domestic 2MW wind turbine as an example,the comparisons of the test data of the tip speed ratio,the wind energy utilization,the blade root load,the lift-resistance ratio,the power and the power generation capacity before and after the extension are carried out.The ex-perimental results show that the optimized airfoil thickness is 15%after the blade extension.And on the basis of an average increase of about 3.156%in the lift-to-drag ratio,the loads at the root of the blade in the direction of Mx,My,and Mz are increased by a maximum of 12.3%,12.7%,and 12.5%,respectively.Moreover,andallofthemareinasaferangeof13%,andthepowergeneration capacity is increased by 34.71%in comparison with the historical level.It further illustrates that the lift-to-drag ratio can be improved sharply when the optimization of the blade airfoil thickness is opti-mized using the IQPSO,and the performance enhancement of the wind turbine is achieved to increase the power generation capacity of the wind turbine under the premise of satisfying the loads borne by the blades.

improved quantum particle swarm algorithmsblade lengtheningairfoil thickness optimiza-tionaerodynamic performance

周晓东、肖正江、杨坤鹏、牛保佳

展开 >

国华(江苏)风电有限公司,江苏 盐城 224005

国家能源集团东台海上风电有限责任公司,江苏 盐城 224005

国华(当涂)新能源有限公司,安徽 马鞍山 243000

改进量子粒子群算法 叶片延长 翼型厚度优化 气动性能

2024

节能技术
国防科技工业节能技术服务中心

节能技术

CSTPCD
影响因子:0.601
ISSN:1002-6339
年,卷(期):2024.42(4)
  • 5