首页|基于火焰图像和半监督学习模型的燃烧NOx排放预测

基于火焰图像和半监督学习模型的燃烧NOx排放预测

扫码查看
燃烧排放监测对于优化燃烧质量、提高燃烧效率具有重要意义.为了实现燃烧NOx排放的精确预测,本研究提出了一种基于火焰图像的半监督学习模型.在该模型中,火焰图像的深层特征首先由卷积自编码(Convolutional Autoencoder,CAE)提取,然后送至高斯过程回归(Gaussian Process Regression,GPR)进行分析,得到燃烧NOx浓度.在重油燃烧炉膛上开展实验研究,利用不同工况下的火焰图像测试CAE-GPR性能.结果证实,CAE可以自动提取火焰图像的关键信息,GPR能够提供NOx点预测及置信区间.
Prediction of Combustion NOx Emissions through Flame Image and Semi-supervised Learning Model
Combustion emissions monitoring is crucial for optimizing combustion quality and improving combustion efficiency.To achieve accurate prediction of combustion NOx emission,a semi-supervised learning model is established based on the flame image.In this model,the deep features of the flame im-age are first extracted by the Convolutional Autoencoder(CAE),and then analyzed by the Gaussian Process Regression(GPR)to determine the NOx concentration.Experimental research was conducted on a heavy-oil combustion furnace,and the flame images under different operating conditions were captured to verify the CAE-GPR performance.Results confirmed that the CAE can automatically extract key im-age information,and the GPR can provide reliable NOx point prediction and confidence intervals.

NOx emissionflame imagedeep featureadversarial convolutional autoencodergaussian process

王宝华、温武斌、王建超、韩哲哲、许传龙

展开 >

国能常州发电有限公司,江苏 常州 213033

国家能源集团江苏电力有限公司,江苏 南京 215433

南京工程学院信息与通信工程学院,江苏 南京 211167

东南大学能源与环境学院,江苏 南京 210096

展开 >

燃烧排放 火焰图像 深层特征 卷积自编码 高斯过程

2024

节能技术
国防科技工业节能技术服务中心

节能技术

CSTPCD
影响因子:0.601
ISSN:1002-6339
年,卷(期):2024.42(6)